Catalytic Semireduction of Alkynes to Alkenes

\[
\begin{align*}
\text{R}^1 \equiv & \text{R}^2 = \text{Alk, alkenyl residues} \\
\text{R}^3 = & \text{t}-\text{Bu, } i-\text{Bu}
\end{align*}
\]

Significance: A novel copper-catalyzed semireduction of alkynes to alkenes has been disclosed. 0.5 to 2 mol% of a copper catalyst in combination with polymethylhydrosiloxane and isobutyl alcohol efficiently reduced terminal and internal alkynes, even in the presence of nitro and iodo groups.

Comment: The authors propose the following mechanism: the silane transfers its hydride to the copper catalyst and a subsequent hydrocupration of the alkyne takes place. Protonation of this alkenyl-copper intermediate by the alcohol forms a copper alkoxide and the desired product.

\[
\begin{align*}
\text{R}^1 & \equiv \text{R}^2 \equiv \text{Alk, alkenyl residues} \\
\text{R}^3 & = \text{t}-\text{Bu, } i-\text{Bu}
\end{align*}
\]