Zeitschrift für Phytotherapie 2013; 34(03): 106-111
DOI: 10.1055/s-0032-1331494
Übersicht
Hormonmodulation
© Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Phytotherapeutika und Hormonmodulation – neue Perspektiven der komplementären Onkologie

George Brasch

Subject Editor:
Further Information

Publication History

Publication Date:
05 July 2013 (online)

Zusammenfassung

Die Möglichkeit, auf hormonabhängige Krebserkrankungen mit hormonaktiven Pflanzeninhaltsstoffen Einfluss zu nehmen oder diese in der Prävention einzusetzen, ist bis dato hauptsächlich in vitro erforscht. Positive Ergebnisse daraus sowie erste kleinere klinische Studien lassen es sinnvoll erscheinen, sich diesen Therapieoptionen intensiver zuzuwenden. Im Speziellen kommt hier die Modulation der Enzyme Aromatase und 5α-Reduktase in Betracht. Wirkstoffseitig beschäftigt sich dieser Artikel u.a. mit Chrysin und Lignanen.

SUMMARY

Phytotherapy and hormone modulation: New perspectives in complementary oncology
Until now, there has mainly been in vitro research on the possibility of influencing hormone-dependent cancers with hormone-active plant ingredients or how to use them in prevention. Nonetheless, the positive results from these first but modest clinical studies make it necessary to consider these treatment options more intensively. Particularly, the modulation of the enzymes aromatase and 5-alpha reductase should be considered. This article also discusses the efficacy of the active substances chrysin and lignans, among others.

 
  • Literatur

  • 1 Adlercreutz H. Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect 1995; 103 (Suppl. 7): 103-112
  • 2 Horn-Ross PL, Barnes S, Lee M et al. Assessing phytoestrogen exposure in epidemiologic studies: development of a database (United States). Cancer Causes Control 2000; 11: 289-298
  • 3 Adlercreutz H, Mazur W. Phyto-estrogens and Western diseases. Ann Med 1997; 29: 95-120
  • 4 Buck K, Vrieling A, Zaineddin AK et al. Serum enterolactone and prognosis of postmenopausal breast cancer. J Clin Oncol 2011; 29: 3730-3738
  • 5 Thompson LU, Chen JM, Li T et al. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin Cancer Res 2005; 11: 3828-3835
  • 6 Lowcock EC, Cotterchio M, Boucher BA. Consumption of flaxseed, a rich source of lignans, is associated with reduced breast cancer risk. Cancer Causes Control 2013; 24: 813-816
  • 7 Christofidou-Solomidou M, Tyagi S, Tan KS et al. Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice. BMC Cancer 2011; 11: 269
  • 8 Christofidou-Solomidou M, Tyagi S, Pietrofesa R et al. Radioprotective role in lung of the flaxseed lignan complex enriched in the phenolic secoisolariciresinol diglucoside (SDG). Radiat Res 2012; 178: 568-580
  • 9 Eich E, Pertz H, Kaloga M et al. (–)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J Med Chem 1996; 39: 86-95
  • 10 Ichikawa K, Kinoshita T, Nishibe S, Sankawa U. The Ca2+ antagonist activity of lignans. Chem Pharm Bull 1986; 34: 3514-3517
  • 11 Iwakami S, Wu JB, Ebizuka Y, Sankawa U. Platelet activating factor (PAF) antagonists contained in medicinal plants: Lignans and sesquiterpenes. Chem Pharm Bull 1992; 40: 1196-1198
  • 12 Moritani S, Nomura M, Takeda Y, Miyamoto K. Cytotoxic components of bardanae fructus (goboshi). Biol Pharm Bull 1996; 19: 1515-1517
  • 13 Renouard S, Lopez T, Hendrawati O et al. Podophyllotoxin and deoxypodophyllotoxin in Juniperus bermudiana and 12 other Juniperus species: optimization of extraction, method validation, and quantification. J Agric Food Chem 2011; 59: 8101-8107
  • 14 Vasilev N, Momekov G, Zaharieva M et al. Cytotoxic activity of a podophyllotoxin-like lignan from Linum tauricum Willd. Neoplasma 2005; 52: 425-429
  • 15 Teiten MH, Gaascht F, Eifes S et al. Chemopreventive potential of curcumin in prostate cancer. Genes Nutr 2010; 5: 61-74
  • 16 Schaaf C, Shan B, Buchfelder M et al. Curcumin acts as anti-tumorigenic and hormone-suppressive agent in murine and human pituitary tumour cells in vitro and in vivo. Endocr Relat Cancer 2009; 16: 1339-1350
  • 17 Labbozzetta M, Notarbartolo M, Poma P et al. Curcumin as a possible lead compound against hormone-independent, multidrugresistant breast cancer. Ann N Y Acad Sci 2009; 1155: 278-283
  • 18 Liang YJ, Hao Q, Wu YZ et al. Aromatase inhibitor letrozole in synergy with curcumin in the inhibition of xenografted endometrial carcinoma growth. Int J Gynecol Cancer 2009; 19: 1248-1252
  • 19 Edgar AD, Levin R, Constantinou CE, Denis L. A critical review of the pharmacology of the plant extract of Pygeum africanum in the treatment of LUTS. Neurourol Urodyn 2007; 26: 458-463 discussion 464
  • 20 Raynaud JP, Cousse H, Martin PM. Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon. J Steroid Biochem Mol Biol 2002; 82: 233-239
  • 21 Pais P. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II. Adv Ther 2010; 27: 555-563
  • 22 Abe M, Ito Y, Oyunzul L et al. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free fatty acids contained in saw palmetto extract. Biol Pharm Bull 2009; 32: 646-650
  • 23 Oku H, Ishiguro K. Cyclooxygenase-2 inhibitory 1,4-naphthoquinones from Impatiens balsamina L. Biol Pharm Bull 2002; 25: 658-660
  • 24 Fujita R, Liu J, Shimizu K et al. Anti-androgenic activities of Ganoderma lucidum . J Ethnopharmacol 2005; 102: 107-112
  • 25 Cho CH, Bae JS, Kim YU. 5alpha-reductase inhibitory components as antiandrogens from herbal medicine. J Acupunct Meridian Stud 2010; 3: 116-118
  • 26 Roh SS, Kim CD, Lee MH et al. The hair growth promoting effect of Sophora flavescens extract and its molecular regulation. J Dermatol Sci 2002; 30: 43-49
  • 27 Hirata N, Tokunaga M, Naruto S et al. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf. Biol Pharm Bull 2007; 30: 2402-2405
  • 28 Park WS, Lee CH, Lee BG, Chang IS. The extract of Thujae occidentalis semen inhibited 5alpha-reductase and androchronogenetic alopecia of B6CBAF1/j hybrid mouse. J Dermatol Sci 2003; 31: 91-98
  • 29 Sun LP, Chen AL, Hung HC et al. Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem 2012; 60: 11748-11758
  • 30 Popolo A, Piccinelli LA. Antiproliferative activity of brown Cuban propolis extract on human breast cancer cells. Nat Prod Commun 2009; 4: 1711-1716
  • 31 Pratsinis H, Kletsas D, Melliou E, Chinou I. Antiproliferative activity of Greek propolis. PJ Med Food 2010; 13: 286-290
  • 32 Zedan H, Hofny ER, Ismail SA. Propolis as an alternative treatment for cutaneous warts. Int J Dermatol 2009; 48: 1246-1249
  • 33 Seda VatanseverH, Sorkun K et al. Propolis from Turkey induces apoptosis through activating caspases in human breast carcinoma cell lines. Acta Histochem 2010; 112: 546-556
  • 34 Zižić JB, Vuković NL, Jadranin MB et al. Chemical composition, cytotoxic and antioxidative activities of ethanolic extracts of propolis on HCT-116 cell line. J Sci Food Agric 2013; mar 15 doi: 10.1002/jsfa.6132
  • 35 Acikelli AH, Gustmann S, Bardenheuer W et al. Flavonoids isolated from Caribbean propolis show cytotoxic activity in human cancer cell lines. Int J Clin Pharmacol Ther 2013; 51: 51-53
  • 36 Sawicka D, Car H, Borawska MH, Nikliński J. The anticancer activity of propolis. Folia Histochem Cytobiol 2012; 50: 25-37
  • 37 http://www.rain-tree.com/maracuja.htm
  • 38 Madaus G. Lehrbuch der Biologischen Heilmittel. Leipzig: Thieme; 1938
  • 39 Schönfelder I, Schönfelder P. Das neue Handbuch der Heilpflanzen. Stuttgart: Kosmos; 2011
  • 40 Dhawan K, Kumar S, Sharma A. Aphrodisiac activity of methanol extract of leaves of Passiflora incarnata Linn. in mice. Phytother Res 2003; 17: 401-403
  • 41 Wichtl M Hrsg. Teedrogen und Phytopharmaka. 4 Aufl. Stuttgart: Wissenschaftl. Verlagsges; 2002
  • 42 Wolfman C, Viola H, Paladini A et al. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. . Pharmacol Biochem Behav 1994; 47: 1-4
  • 43 Horvath CR, Martos PA, Saxena PK. Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant huang-qin (Scutellaria baicalensis Georgi) using high-performance liquid chromatography with diode array and mass spectrometric detection. J Chromatogr A 2005; 1062: 199-207
  • 44 Gansser D, Spiteller G. Aromatase inhibitors from Urtica dioica roots. Planta Med 1995; 61: 138-140
  • 45 Drsata J. Enzyme inhibition in the drug therapy of benign prostatic hyperplasia. Cas Lek Cesk 2002; 141: 630-635
  • 46 Chrubasik JE, Roufogalis BD, Wagner H, Chrubasik S. A comprehensive review on the stinging nettle effect and efficacy profiles. Part II: urticae radix. Phytomedicine 2007; 14: 568-579
  • 47 Adlercreutz H, Mazur W. Phyto-estrogens and Western diseases. Ann Med 1997; 29: 95-120
  • 48 Ostlund Jr. RE, McGill JB, Zeng CM et al. Gastrointestinal absorption and plasma kinetics of soy Delta(5)-phytosterols and phytostanols in humans. Am J Physiol Endocrinol Metab 2002; 282: E911-916
  • 49 Ostlund Jr. RE. Phytosterols in human nutrition. Annu Rev Nutr 2002; 22: 533-549
  • 50 Hevesi Tóth B, Kéry A. Epilobium parviflorum – in vitro study of biological action. Acta Pharm Hung 2009; 79: 3-9
  • 51 Ducrey B, Marston A, Göhring S et al. Inhibition of 5 alpha-reductase and aromatase by the ellagitannins oenothein A and oenothein B from Epilobium species. Planta Med 1997; 63: 111-114
  • 52 Stolarczyk M, Piwowarski JP, Granica S et al. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells- (LNCaP) proliferation and PSA secretion. Phytother Res 2013; Feb 25 doi: 10.1002/ptr.4941
  • 53 Ramstead AG, Schepetkin IA, Quinn MT, Jutila MA. Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFNγ production by lymphocytes. PLoS One 2012; 7: e50546
  • 54 Kiss AK, Bazylko A, Filipek A et al. Oenothein B’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomedicine 2011; 18: 557-560
  • 55 Zhao J, Dasmahapatra AK, Khan SI, Khan IA. Anti-aromatase activity of the constituents from damiana (Turnera diffusa). J Ethnopharmacol 2008; 120: 387-393
  • 56 Estrada-Reyes R, Carro-Juárez M, Martínez-Mota L. Pro-sexual effects of Turnera diffusa Wild (Turneraceae) in male rats involves the nitric oxide pathway. J Ethnopharmacol 2013; 146: 164-172
  • 57 Harikumar KB, Aggarwal BB. Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 2008; 7: 1020-1035
  • 58 Eng ET, Williams D, Mandava U et al. Antiaromatase chemicals in red wine. Ann N Y Acad Sci 2002; 963: 239-246
  • 59 Wang Y, Man GhoW, Chan FL et al. The red clover (Trifolium pratense) isoflavone biochanin A inhibits aromatase activity and expression. Br J Nutr 2008; 99: 303-310
  • 60 van Meeuwen JA, Nijmeijer S, Mutarapat T et al. Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts – a comparative study. Toxicol Appl Pharmacol 2008; 228: 269-276
  • 61 Jeong HJ, Shin YG, Kim IH, Pezzuto JM. Inhibition of aromatase activity by flavonoids. Arch Pharm Res 1999; 22: 309-312
  • 62 Le Bail JC, Laroche T, Marre-Fournier F, Habrioux G. Aromatase and 17beta-hydroxysteroid dehydrogenase inhibition by flavonoids. Cancer Lett 1998; 133: 101-106
  • 63 Lacey M, Bohday J, Fonseka SM et al. Doseresponse effects of phytoestrogens on the activity and expression of 3beta-hydroxysteroid dehydrogenase and aromatase in human granulosa-luteal cells. J Steroid Biochem Mol Biol 2005; 96: 279-286