ZWR - Das Deutsche Zahnärzteblatt 2012; 121(9): 418-423
DOI: 10.1055/s-0032-1329573
Fortbildung
Neue Technologien
© Georg Thieme Verlag Stuttgart · New York

Stammzellbasierte Zahnregeneration im Tiermodell

M Steindorff
1   Medizinische Hochschule Hannover
,
H Lehl
1   Medizinische Hochschule Hannover
,
A Winkel
1   Medizinische Hochschule Hannover
,
M Stiesch
1   Medizinische Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Publication Date:
30 October 2012 (online)

Im Bereich der dentalen Stammzellforschung gibt es seit einigen Jahren vielversprechende Ansätze, natürliche Zähne mithilfe stammzellbasierter Gewebe- sowie Zahnhartsubstanz-Regenerationen wiederherzustellen. Dabei wird meist ein Trägermaterial (Scaffold) eingesetzt, das mit Stammzellen besiedelt und anschließend ins Tier implantiert wird. Zahnähnliche Strukturen konnten vielfach erzeugt werden, doch bleibt bis zur medizinischen Anwendung noch erheblicher Forschungsbedarf bestehen.

 
  • Literatur

  • 1 Akizuki T, Oda S, Komaki M et al. Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 2005; 40: 245-251
  • 2 Andersen AC. The Beagle as an Experimental Dog. Ames: Iowa State University Press; 1970
  • 3 Arakaki M, Ishikawa M, Nakamura T et al. Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 2012; 287: 10590-10601
  • 4 Dangaria SJ, Ito Y, Luan X et al. Successful Periodontal Ligament Regeneration by Periodontal Progenitor Preseeding on Natural Tooth Root Surfaces. Stem Cells Dev 2011; 20: 1659-1668
  • 5 Duailibi SE, Duailibi MT, Zhang W et al. Bioengineered Dental Tissues Grown in the Rat Jaw. J Dent Res 2008; 87: 745-750
  • 6 El-Backly RM, Massoud AG, El-Badry AM et al. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust Endod J 2008; 34: 52-67
  • 7 Galler KM, Cavender AC, Koeklue U et al. Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen Med 2011; 6: 191-200
  • 8 Gronthos S, Brahim J, Li W et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81: 531-535
  • 9 Gronthos S, Mankani M, Brahim J et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 2000; 97: 13625-13630
  • 10 Guo W, He Y, Zhang X et al. The use of dentin matrix scaffold and dental follicle cells for dentin regeneration. Biomaterials 2009; 30: 6708-6723
  • 11 Harada H, Mitsuyasu T, Toyono T et al. Epithelial stem cells in teeth. Odontology 2002; 90: 1-6
  • 12 Ikeda E, Morita R, Nakao K et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci 2009; 106: 13475-13480
  • 13 Kuo T-F, Lin H-C, Yang K-C et al. Bone Marrow Combined With Dental Bud Cells Promotes Tooth Regeneration in Miniature Pig Model. Artif Organs 2011; 35: 113-121
  • 14 Lang NP, Bragger U, Walther D et al. Ligature-induced peri-implant infection in cynomolgus monkeys. I. Clinical and radiographic findings. Clin Oral Implants Res 1993; 4: 2-11
  • 15 Lee J-H, Lee D-S, Choung H-W et al. Odontogenic differentiation of human dental pulp stem cells induced by preameloblast-derived factors. Biomaterials 2011; 32: 9696-9706
  • 16 Li R, Guo W, Yang B et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials 2011; 32: 4525-4538
  • 17 Lindhe J, Berglundh T, Ericsson I et al. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992; 3: 9-16
  • 18 Miura M, Gronthos S, Zhao M et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci 2003; 100: 5807-5812
  • 19 Morotomi T, Kawano S, Toyono T et al. In vitro differentiation of dental epithelial progenitor cells through epithelial-mesenchymal interactions. Arch Oral Biol 2005; 50: 695-705
  • 20 Muschler G, Nakamoto C, Griffith L. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 2004; 86: 1541-1558
  • 21 Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011; 63: 300-311
  • 22 Ohazama A, Modino SAC, Miletich I et al. Stem-cell-based Tissue Engineering of Murine Teeth. J Dent Res 2004; 83: 518-522
  • 23 Seo B-M, Miura M, Gronthos S et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 2004; 364: 149-155
  • 24 Sonoyama W, Liu Y, Fang D et al. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine. PLoS ONE 2006; 1
  • 25 Steible JI. Der Hund als Tiermodell in der Parodontologie am Beispiel der rekonstruktiven Parodontitistherapie. [Dissertation]. TiHo Hannover 2001;
  • 26 Ulmer FL, Winkel A, Kohorst P et al. Stem cells - Prospects in dentistry. Schweiz Monatsschr zahnmed 2010; 120: 860-872
  • 27 Wang S, Liu Y, Fang D et al. The miniature pig: a useful large animal model for dental and orofacial research. Oral Dis 2007; 13: 530-537
  • 28 Yang X, Walboomers XF, van den Beucken JJJP et al. Hard Tissue Formation of STRO-1-Selected Rat Dental Pulp Stem Cells In Vivo. Tissue Eng Part A 2008; 15: 367-375
  • 29 Young CS, Terada S, Vacanti JP et al. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 2002; 81: 695-700
  • 30 Yu J, Wang Y, Deng Z et al. Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 2007; 99: 465-474
  • 31 Zhang W, Ahluwalia IP, Yelick PC. Three dimensional dental epithelial-mesenchymal constructs of predetermined size and shape for tooth regeneration. Biomaterials 2010; 31: 7995-8003