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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease characterized by progressive muscular atrophy and
weakness resulting from loss of both upper and lower motor
neurons. It was first clinically and pathologically described by
Charcot in 1874.1 Amyotrophic lateral sclerosis gained noto-
riety after the New York Yankee baseball player, Lou Gehrig,
was diagnosed in 1939; to this day, it is commonly referred to
as “Lou Gehrig’s disease” in the United States. The disease
generally progresses rapidly and is inevitably fatal. The cause
of death is relatively uniform—typically due to respiratory
failure.2,3 The incidence ranges from 1.5 to 2.5 per 100,000
per year, with a lifetime risk of �1:400.4 The mean age of
onset is �60 years, with a male predominance of 1.3:1.5 The
median survival is 2 to 4 years from symptom onset, although
a small percentage live longer than 10 years. The differential
diagnosis is small and misdiagnosis is estimated to be less
than 10%.6,7

Familial ALS is clinically indistinguishable from sporadic
ALS. Familial ALS is generally defined as the history or
presence of ALS in one or more 1st- or 2nd-degree family
members of a person with ALS.8,9 The rate of familial ALS is 5
to 10%.9,10 In 1993, a superoxide dismutase (SOD1) mutation
was discovered that can lead to ALS. Despite this advance, it
was nearly a decade before the next gene mutation was
discovered. There has recently been a rapid expansion in

the number of recognized ALS mutations, with 10 different
ALS mutations identified.10,11 It is estimated that the most
common ALS genes, SOD1, TDP-43, and FUS mutations and
the C9orf72 hexanucleotide repeat, account for 65% of familial
ALS cases in the United States, although the percentage of ALS
linked to these genes varies based on geographical re-
gion.12,13 For some of the genes, ALS is not the only neuro-
degenerative phenotype expressed. For example, the C9orf72
hexanucleotide repeat, is also a common cause of frontotem-
poral dementia (FTD), sometimes in combination with ALS,
and sometimes in isolation with either ALS or FTD.12

There are currently>50 actively enrolling clinical trials for
ALS listed on clinicaltrials.gov, with several times that num-
ber completed. Most drugs for ALS come through a traditional
route of identifying a target and then screening for com-
pounds that modify the activity of the target, then optimizing
hits within the identified drug family to help select the ideal
compound. However, drugs are increasingly coming from
large screening efforts that examine compounds without
known targets. This helps to identify potential drug treat-
ments with mechanisms already known or thought to be
related to ALS, but also identify potential drug treatments
that cause reconsideration of the disease pathway. One of the
first nontraditional screens for ALS and other selected neu-
rologic diseases was the large community screening effort by
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Abstract Amyotrophic lateral sclerosis (ALS) is an unrelenting progressive neurodegenerative
disease causing progressive weakness, ultimately leading to death. Despite aggressive
research, the pathways leading to neuronal death are incompletely understood. Riluzole
is the only drug clinically proven to enhance survival of ALS patients, but its mechanism
of action is not clearly understood. In this article, the proposed pathophysiology of ALS is
reviewed including glutamate excitotoxicity, oxidative stress, mitochondrial dysfunc-
tion, autoimmune mechanisms, protein aggregation, SOD1 accumulation, and neuro-
nal death. Based on these mechanisms, past major ALS drug studies will be reviewed as
well as promising current ALS drug studies, focusing on the advancement of these
studies from the bench to the patient’s bedside.
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the National Institute of Neurological Disorders and Stroke
(NINDS) in the early 2000s.14 About 1,000 compounds were
screened in a variety of biologic assays, the majority of which
were already in use for nonneurologic diseases, and several
had positive results. Here we will review proposed ALS
disease mechanisms followed by historical and upcoming
drug studies.

Disease Mechanisms

Although the exact cause of ALS is unknown, there are many
theories that may represent a cascade of pathologic changes.
An early and leading theory is that glutamate, the central
nervous system’s most abundant excitatory neurotransmit-
ter, causes neuron death when it is elevated, leading to the
development of ALS. This was supported by a combination of
findings in ALS patients including elevated glutamate levels
found in fasting serum and cerebrospinal (CSF),15,16 a defi-
ciency of leukocyte glutamate dehydrogenase,17 and defects
in the glutamate transport system that lead to decreased
clearance of extracellular glutamate.18

Oxidative stress is another prominent area of interest. The
potential importance of antioxidant dysfunction was boosted
with the discovery that SOD1 mutations cause familial ALS.
SOD1 is a powerful antioxidant enzyme that catalyzes the
dismutation of the highly reactive superoxide free radical
generated in mitochondria, thus keeping it from harming cell
structures.19 However, it is now believed that SOD1 muta-
tions cause disease by a gain of function related to over-
expression of the mutant SOD1 enzyme,20 leaving the role of
antioxidant function in ALS less clear.

There is evidence supporting an autoimmune mechanism
in ALS.21 It is hypothesized that the immune system targets
the motor nerve terminal leading to a series of changes that
alter calcium homeostasis.22 The disruption of calcium ho-
meostasis may trigger neuronal cell death through apoptotic
pathways.23 Additionally, the ALS SOD1 mouse model dem-
onstrates increased inflammatory factors throughout its
lifespan, including during presymptomatic stages.24 Macro-
phages, which play a key role in neuroinflammation, have
been found at increased levels in spinal cord tissue of
sporadic and familial ALS patients as well as in the ALS
SOD1 mouse model.25

The role of abnormal protein aggregation has been gaining
support in neurodegenerative diseases including ALS. Proteins
that may misfold in ALS include SOD1, TDP-43, and FUS. Cell-
to-cell propagation of misfolded proteins may involve a prion-
like phenomena.26 This basic finding may underlie the clinical
observation of somatotopic spread of weakness in most ALS
patients. Misfolded SOD1 proteins have been shown to induce
the misfolding of normal wild type SOD1 in cell culture.27 This
is supported by pathologic evidence that shows ALS begins
focally and then spreads to neighboring neurons.28

To facilitate the study of these hypotheses and to explore
new treatments, animal models based on genetic mutations
have been developed. SOD1 gene mutations were discovered
before other ALS gene mutations and remain the most used
and best described animal models. However, there is growing

concern that the SOD1animalmodelmaynot represent ALS as
awhole. SOD1mutations only cause�2%of all ALS,19 and thus
themechanismsmay be distinct from other forms of ALS.29,30

To address this concern, particularly with drugs that target
the SOD1 mutation, some ALS drug studies only include
patients with known SOD1 mutations.

Stem Cell Therapy

ALS is an area of intense interest for stem cell transplant
research. Unfortunately,manyALS patients have fallenprey to
false promises and stem cell scams, both in the United States
and abroad.31,32 Stem cell studies have yielded positive
results in both in vitro and ALS animal models using a variety
of different cell types. Mesenchymal stem cells (bone marrow
derived) and neural progenitor cells (spinal cord-derived) are
the two cell types with the most evidence for use in ALS. Both
mesenchymal and neural progenitor cells have supporting
data from SOD1 animal model studies, demonstrating im-
proved survival, when compared with control animals.33,34

Mesenchymal stem cells have the advantage of autologous
implantation, thus reducing rejection issues and the need for
immunosuppressant therapy. However, recent studies show
that mesenchymal cells isolated from ALS patients have
reduced pluripotency and trophic factors and thus suggest
a reduced potential for autologous mesenchymal transplants
in ALS patients.35

Antiglutamate Drugs

Riluzole was developed in the 1950s as a centrally acting
muscle relaxant and later investigated as an antiseizure and a
neuroprotective agent.36 The exact mechanism of action of
riluzole is unknown, but it has multiple properties, including
inhibition of sodium, calcium, potassium, and glutamate
currents.36 In preclinical studies, riluzole was found to mod-
ulate the transmission of glutamate in hippocampal slices.37

After clinical studies in ALS, riluzole was approved by the
Food and Drug Administration (FDA) in 1995 for treatment.
The clinical benefits are modest, extending ventilator-free
survival by �3 months,38 but it remains the only FDA-
approved disease-modifying drug for ALS.

Other antiglutamate drugs have been evaluated in clinical
trials. Most are antiseizure medications that have antigluta-
mate properties, and include topiramate, gabapentin, and
lamotrigine, but none have demonstrated survival benefit.
Topiramate, a sugar derivative, has four main properties:
inhibition of the enzyme voltage-dependent sodium chan-
nels, inhibition of carbonic anhydrase, enhancement of some
GABA-A receptors, and antagonism of glutamate receptors.39

Initial topiramate studies with organotypic spinal cord cul-
turewere promising; however, it failed to improve survival in
the ALS SOD1mouse model.40 This was followed by a double-
blind placebo-controlled, multicenter randomized clinical
trial with 296 ALS patients.41 In this study, those treated
with topiramate actually had a faster decline in upper-ex-
tremity strength than those treatedwith placebo, and it failed
to result in increased survival, or change in the decline in
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forced vital capacity (FVC) or the ALS Functional Rating Scale
(ALSFRS). Gabapentin primarily works by inhibiting voltage-
gated calcium channels, but at high doses reduces glutamate
synthesis.42 When phase II and phase III results were com-
bined, there was a significantly increased rate of decline in
FVC in the gabapentin-treated group, and the studies failed to
result in any improvement in survival or change in the rate of
decline in ALSFRS or timed walk.43 Lamotrigine is a sodium
channel blocker that also inhibits the release of glutamate and
aspartate.21,26 Lamotrogine has been studied in two double-
blind placebo controlled trials, the first at low dose (100 mg
daily) and the second at a moderate dose (300 mg daily), but
both studies failed to show any improvement in ambulation,
bulbar symptoms, or ALSFRS.44,45 Other drugs with antiglu-
tamate proprieties, including dextromethorphan and mem-
antine, failed to show improvement in survival.46,47

Despite these multiple negative studies, several antiglu-
tamate drugs showpromise and are currently in development
stages. Talampanel (LY300164), a benzodiazepine that is a
noncompetitive AMPA antagonist with antiglutamate prop-
erties, has completed a phase II drug trial with 59 ALS
patients.48 The results were mixed, but had promising as-
pects; the decline in muscle strength was slowed by 15% and
the decline in the ALSFRS was slowed by 30% in the talampa-
nel-treated group; nevertheless, neither measure reached
statistical significance, and there was no survival benefit. In
a recent SOD1 ALS mouse study with talampanel, motor
neuron calcium levels were reduced, but only when given
presymptomatically.49 Ceftriaxone, a third-generation ceph-
alosporin, which likely modifies glutamate by altering the
glutamate transport protein,50 is currently in a phase III trial,
with 600 ALS participants.51 Glutamate carboxypeptidase II
(NAALADase) has been proposed because of its dual anti-
glutamate mechanism, by directly decreasing production of
glutamate and indirectly increasing the breakdown of gluta-
mate in the central nervous system.52 Additionally, glutamate
carboxypeptidase II has been shown to reduce neuropatho-
logic changes in the ALS SOD1 mouse model.52

Antioxidant/Mitochondrial Preservation
Drugs

The first study of an antioxidant agent (vitamin E) for ALSwas
published in 1940.53 This study had several critical design
flaws and remains an example of the need for controls and
blinding. Included in the multiple vitamin E responders was
Lou Gehrig himself, who reportedly “improved” with treat-
ment.53,54 Despite continuing his treatment with high doses
of oral and injected vitamin E, he passed awayone year later.54

Interest in vitamin E was rekindled due to delayed disease
onset in the ALS SOD1 mouse model.55 Two randomized
controlled double-blind clinical studies of vitamin E or pla-
cebo in combination with riluzole have now been completed.
One used 600 IU daily and the other 5,000 mg daily. Neither
showed benefit on survival or functional status when vitamin
Ewas added to riluzole.56,57However, the issue remains open,
as there have been recent studies suggesting a decreased ALS
risk among long-term vitamin E users.58

Other antioxidant agents and other drugs targeted to
mitochondrial function have also been investigated. N-ace-
tylcysteine, an over-the-counter antioxidant, significantly
prolonged survival and delayed motor symptom onset
when given presymptomatically in the ALS SOD1 mouse
model.59 However, a clinical ALS trial with N-acetylcysteine
failed to produce significant differences in survival or change
in decline of motor symptoms.60 Creatine, which has neuro-
protective effects, also had positive animal data, but the
human ALS studies failed to show significant differences in
survival, ALSFRS-revised (ALSFRS-R), or FVC in those treated
with 5 to 10 g of creatine.61 The antidiabetes type II drug,
metformin, with antioxidant and antiinflammatory proper-
ties, showed no benefit in male ALS SOD1 mice and acceler-
ated disease progression in the female mice.62 There have
been many other small studies with antioxidants, such as
selegiline and melatonin, and though these failed to produce
positive results they are generally too small to draw signifi-
cant conclusions.63,64

Despite multiple negative antioxidant drug trials, one
agent remains promising. Dexpramipexole, the Rþ enantio-
mer of pramipexole, has antioxidant effects, in part by
targeting preservation of mitochondria function by reducing
apoptosis.65 The S-enantiomer, pramipexole is currently used
for Parkinson’s disease and restless leg syndrome. The pure
Rþ form has less dopaminergic receptor affinity and thus
reduces many of the dose-limiting dopaminergic side-ef-
fects.65 Dexpramipexole, is currently in phase III studies66

based on a promising two-part phase II trial, which showed a
dose-dependent trend toward a slower decline in the ALSFRS-
R and significant difference in decline of both mortality and
ALSFRS-R.67

Immunosuppressive Drugs and Procedures

Multiple immunosuppressive drugs have been studied, in-
cluding corticosteroids, plasmapheresis, intravenous immu-
noglobulin, cyclophosphamide, and cyclosporine, all of which
failed to alter disease progression.68–72 Minocycline is a
tetracycline antibiotic that decreases inflammation by inhib-
iting microglial activation.73 SOD1 animal studies were opti-
mistic, showing delayed disease onset, prolonged survival,
and decreased motor neuron loss when given to presymp-
tomatic animals.73 In phase I/II trials there were no major
safety issues.74 In a phase III randomized placebo-controlled
trial, those treated with minocycline had a significantly
greater decline in the ALSFRS-R score.75 There was also a
nonsignificant trend toward a faster decline in breathing
function and muscle strength as well as mortality. These
results were supported by experiments in the ALS SOD1
mouse model that showed when minocycline was given
late in the symptomatic phase it no longer had a neuro-
protective effect, but caused an increased inflammatory
response.76

Anew investigational agent, NP001, targets anothermech-
anism of neuroinflammation, by regulating macrophage ac-
tivation and potentially returning macrophages back to their
neuroprotective state.77 In the phase I study, patients were
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given four doses of ascending quantity and ALS progression-
associated biomarkers were measured.77 The drug was de-
termined to be safe and tolerable at doses given. Additionally,
ALS progression biomarkers levels had a statistically signifi-
cant dose-dependent decrease to each of the NP001 treat-
ments. NP001 is currently in a phase II study.78

Muscle-Maintenance Drugs

Another proposed target for the drug treatment of ALS is at
the muscle itself. CK-2017357 activates skeletal muscle by
causing it to be more sensitive to calcium.79 By lowering the
muscle sensitivity to calcium it is theorized to increase the
force produced by the muscle stimulus.79 A double-blind
randomized placebo-controlled phase II trial of CK-2017357
has been completed.80 Part A of the phase II trial included
patients not taking riluzole, and part B included patients
taking riluzole but at a reduced dose of 50 mgdaily (instead of
50 mg twice a day). The treated patients had a dose-depen-
dent improvement in maximum ventilation and handgrip
endurance that trended toward significance.

SOD1 Specific Treatments

ISIS-SOD1rx is an antisense oligonucleotide that targets and
reduces the synthesis of SOD1. It has been shown to prolong
survival in symptomatic ALS SOD1 rats.81 Phase I trials to
determine safety of ISIS-SOD1rx in familial ALS patients with
a confirmed SOD1 mutation have been completed and the
agent appears safe.82,83

Arimoclomol and pyrimethamine, both of which are cur-
rently in clinical trial, are also being tested in patients with
SOD1 mutations. Arimoclomol, which is in phase II/III, has
been shown to increase survival and improve motor function
in the ALS SOD1 mouse model.84,85 Arimoclomol is believed
to protect motor neurons from cell death by amplifying the
cytoprotective heat shock response in times of stress.84

Pyrimethamine, an antimalarial and toxoplasmosis drug,
has been found to reduce in vitro levels of SOD1 in mice
and humans.86,87 It was identified as a potential SOD1
lowering agent through a high-throughput screen, and a
phase I/II study is underway.88

Stem Cells

The first stem cell trial for ALS surgically implanted autolo-
gous mesenchymal cells into the dorsal spinal cord of 19 ALS
patients.89 This study has now completed a two-part phase I
trial with long-term follow-up, and the treatment appears to
be reasonably safe. The second mesenchymal safety study
included both multiple sclerosis (MS) and ALS patients.90

Nineteen ALS patients had autologous enhanced mesenchy-
mal cells injected intrathecally and intravenously. Patients
were followed from6 to 18months and the procedurewas felt
to be reasonably safe. The first human controlled trial with
neural stem cells is currently underway.91 Part 1 of the phase
1 study demonstrated that lumbar intraspinal injections of
neural stem cells (spinal cord derived cells) was safe in 12

patients.91 Although the studywas not intended nor powered
for efficacy, one subject had striking improvement in their
ALSFRS-R score. Part 2 of phase 1 is underway with intra-
spinal injections in the cervical cord, with the goal of prefer-
entially protecting respiratory motor neurons.91

Conclusion

The race to understand and treat ALS is on. Despite aggressive
research, riluzole remains the only FDA-approved pharmaco-
logical therapy for ALS. The myriad mechanisms of ALS
pathophysiology discussed, including glutamate excitotoxic-
ity, the role of antioxidants, mitochondrial dysfunction, au-
toimmune components, and protein aggregation, suggest
that ALS is a complex disease for which we still know
remarkably little. Although there have been positive results
in pharmacologic targeting of all of the mechanisms dis-
cussed in this review, no agent has been developed that
significantly alters the natural history. While curative drugs
have been discovered in the past for other diseases without a
complete understanding of the pathophysiology or all of the
relevant targets, it is unlikely thatmajor breakthroughs in ALS
treatment will comewithout amore complete understanding
of the true disease mechanism.

We eagerly await the phase III results of the antiglutamate
drug ceftriaxone, and the mitochondria preservation drug,
dexpramipexole. Given the multiple human studies that
failed to confirm findings from animal studies, we are cau-
tious about placing too much emphasis on the results from
animal studies, particularly when completed in the asymp-
tomatic phase.
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