
Abstract
!

Many cancer patients fail to respond to chemo-
therapy because of the intrinsic resistance of their
cancer to pro-apoptotic stimuli or the acquisition
of the multidrug resistant phenotype during
chronic treatment. Previous data from our groups
and from others point to the sodium/potassium
pump (the Na+/K+-ATPase, i.e., NaK) with its
highly specific ligands (i.e., cardiotonic steroids)
as a new target for combating cancers associated
with dismal prognoses, including gliomas, mela-
nomas, non-small cell lung cancers, renal cell car-
cinomas, and colon cancers. Cardiotonic steroid-
mediated Na+/K+-ATPase targeting could circum-
vent various resistance pathways. The most prob-
able pathways include the involvement of Na+/

K+-ATPase β subunits in invasion features and
Na+/K+-ATPase α subunits in chemosensitisation
by specific cardiotonic steroid-mediated apopto-
sis and anoïkis-sensitisation; the regulation of
the expression of multidrug resistant-related
genes; post-translational regulation, including
glycosylation and ubiquitinylation of multidrug
resistant-related proteins; c-Myc downregula-
tion; hypoxia-inducible factor downregulation;
NF-κB downregulation and deactivation; the inhi-
bition of the glycolytic pathway with a reduction
of intra-cellular ATP levels and an induction of
non-apoptotic cell death. The aims of this review
are to examine the various molecular pathways
by which the NaK targeting can be more deleteri-
ous to biologically aggressive cancer cells than to
normal cells.
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Introduction
!

Resistance of cancer cells
Resistance to chemotherapy is the most impor-
tant reason for treatment failure in cancer pa-
tients. Tumours may be intrinsically drug-resist-
ant or develop resistance to chemotherapy during
treatment [1]. It is well known that cancer cells
are able to resist various cytotoxic agents because
they possess a set of anti-cell death mechanisms
that counteract chemotherapeutic responses.
These protective mechanisms include the consti-
tutive activation of the phosphatidylinositide 3-
kinase (PI3-K)/Akt and the nuclear factor-kappa
B (NF-κB) signalling pathways, which are inter-
linked [2,3]. Treatment can lead to the death of
most tumour cells (drug-sensitive), but some cells
(drug-resistant) survive and grow. Cancer has the
ability to become resistant to many different
types of drugs. Increased efflux of drug, enhanced
* R.K. is a Director of Research of the Fonds National de la
Recherche Scientifique (FNRS; Brussels, Belgium).
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repair and increased tolerance to DNA damage,
high anti-apoptotic potential, decreased perme-
ability and enzymatic deactivation allow cancer
cells to survive chemotherapy. Acquired resis-
tance is a particular problem, as tumours do not
only become resistant to the drugs that are origi-
nally used to treat them but may also become
cross-resistant to other drugs with different
mechanisms of action.
A major obstacle to the effective treatment of can-
cer is the multidrug resistance (MDR) phenomen-
on exhibited by many cancers [4,5]. MDR can be
an intrinsic characteristic of malignant cells or ac-
quired during drug therapy [5]. The most promi-
nent mechanisms mediating MDR to anti-neo-
plastic agents are (a) over-expression of members
of three ATP-binding cassette (ABC) transporter
sub-families, ABCB, ABCC, and ABCG, (b) lung re-
sistance-related protein (LRP, identified as the
major vault protein (MVP)), and (c) loss of genes,
such as p53, that control DNA integrity [5–7].
Thus, targeting or circumventing these proteinsʼ
activities would have a major impact on cancer
s-Mediated Na+/K+-ATPase… Planta Med 2013; 79: 189–198



Fig. 1 Classification and chemical structures of
cardiotonic steroids. Cardiotonic steroids are com-
pounds presenting a steroid nucleus with a lactone
moiety at position 17. The aglyconemoiety is com-
posed of the steroid nucleus and the R group (lac-
tone ring) at position 17 that defines the class of
cardiotonic steroid: the cardenolides (with an un-
saturated butyrolactone ring) and the bufadieno-
lides (with anα-pyrone ring). The steroid nucleus has
a unique set of fused ring systems that makes the
aglyconemoiety structurally distinct from the other
more common steroid ring systems. The steroidal
skeleton can be substituted at position 3 by the third
structural component, a sugar moiety (glycoside),
leading to the chemical classification of sub-families
as glycosylated cardenolides or glycosylated bufa-
dienolides (depending on the lactonemoiety). Up to
4 sugar molecules may be present in cardiac glyco-
sides; attached in many via the 3β-OH group.
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chemotherapy and cancer patientsʼ survival [8]. Although many
efforts to overcome MDR have been made, no outstanding break-
throughs have been achieved [8]. Consequently, there remains an
urgent need to identify new biological targets associated with
cancer cell chemoresistance as well as novel anti-cancer agents,
with the goal of overcoming resistance to chemotherapy. Pre-
vious unsuccessful approaches indicate the need to target simul-
taneouslymultiple MDR-related targets and thus disable the can-
cer cellsʼ ability to deploy escape strategies. Accordingly, a com-
pletely new way of attacking resistant cancer cells might rely on
targeting the sodium/potassium pump (Na+/K+-ATPase; NaK)
with its highly specific ligands, i.e., cardiotonic steroids (CS).

The sodium/potassium pump (Na+/K+-ATPase; NaK)
NaK is an integral membrane protein composed of catalytic α and
regulatory β subunits; it is responsible for translocating sodium
and potassium ions across the cell membrane utilising ATP as the
driving force [9]. Although the transport function of the Na+/
K+-ATPase has been investigated extensively in the past, during
the last decade multiple lines of evidence have suggested a num-
ber of other functions for the sodium pump, revealing NaK as (i) a
multifunctional protein with key roles in the formation and
maintenance of adhesion complexes, induction of epithelial cell
tight junctions and polarity, cell adhesion, motility, and actin dy-
namics [10–18], (ii) a signalling protein [19–26], and (iii) a valu-
able novel target in anti-cancer therapy because its aberrant ex-
pression and activity are implicated in the development and pro-
gression of a growing number of cancers [27–38].
In addition to the growing number of scientific publications, a
number of inventions (recently reviewed in [39]) have also em-
phasised the potential usefulness of considering NaK expression
for future anti-cancer therapy by using it as a diagnostic and
prognostic tool, as a biomarker of a therapeutic response in can-
cer chemotherapywith CS, and as a valuable new target. A recent,
in-depth analysis of patent literature [39] revealed a large in-
crease in the number of inventions focusing on new NaK inhib-
itors and ligands designed or selected as potential anti-cancer
agents.
Mijatovic T and Kiss R. Cardiotonic Steroids-Mediated Na+/K+-ATPase… Planta Med
Cardiotonic steroids
The CS, which include cardenolides and bufadienolides (l" Fig. 1),
are compounds that are able to bind to the extracellular surface of
the NaK [27] and are its natural ligands. The best-known natu-
rally occurring CS are digoxin, digitoxin, ouabain, and oleandrin
as cardenolides as well as bufalin, hellebrin, and marinobufage-
nin as bufadienolides. The CS have long been used as positive in-
otropic agents in the treatment of congestive heart failure [40].
Retrospective epidemiological studies conducted during the late
20th century revealed some intriguing results: very few patients
that underwent CS treatment for heart problems died from can-
cer [41]. Over the last 20 years, interest in developing the CS as
anti-cancer agents has grown progressively. CS were identified
to be among the most potent inhibitors (out of 9000 screened
chemicals) of the prostate cancer target genes investigated [42].
Furthermore, in a large investigation that searched for new natu-
ral, cytotoxic anti-cancer compounds, Lindholm et al. [43]
screened extracts from 100 different plants and obtained seven
plants with strong evidence of anti-tumour potential, among
which were three CS-enriched plants, Digitalis lanata, Digitalis
purpurea, and Helleborus cyclophyllus. By binding to the sodium
pump, CS elicit marked effects on cancer cell behaviour, and a
number of studies have emphasised their potential use in oncol-
ogy [27,37,44,45]. Some recent reviews [27,37,45–48] summa-
rise the anti-tumour properties of this class of compounds as well
as their multiple mechanisms of action (briefly summarized in
l" Fig. 2). We recently reviewed the scientific literature to per-
form an in-depth structure-activity relationship (SAR) analysis
with respect to cardenolide- versus bufadienolide-mediated
anti-cancer effects [47]. In that review, we described the SAR of
the CS based on a molecular model of the NaK pump bound to
ouabain [47]. After an analysis of the anti-cancer potency of the
most representative CS, we determined the key structural fea-
tures that lead to powerful cytotoxic agents and those that are
deleterious for anti-tumour activity.
It is interesting that the CS tested in vitro induced potent anti-
proliferative effects in all of the human cancer cell lines exam-
ined; consequently, there is no particularly resistant human can-
cer type. Indeed, the cancer cell lines in the NCI 60 panel (http://
dtp.nci.nih.gov/dtpstandard/cancerscreeningdata/index.jsp) dis-
play similar sensitivities to the CS tested (ouabain, digitoxin, and
hellebrin), and this effect was further confirmed with 19-hy-
2013; 79: 189–198



Fig. 2 Summary of postulated mechanisms of CS-
mediated anti-cancer activity. Summary of the
multiplicity of suggested molecular targets for the
action of most studied CS in human cancer cells. For
more details see [19,20,26,27,37,45–49,93].
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droxy-2′′-oxovoruscharin (also known as UNBS1450) [27,37,44,
49]. A growing number of reports document the ability of some
CS to circumvent cancer cell chemoresistance [50–54], making
them an interesting starting point for the development of new
anti-chemoresistance treatment strategies.
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Aims of the Review
!

The aims of this review are to examine the various molecular
pathways by which the NaK targeting can be more deleterious
to biologically aggressive cancer cells than to normal cells. In or-
der to achieve this goal, a computerized literature search (using
Pub Med database, ASCO and AACR annual meetingsʼ proceed-
ings, and World Intellectual Property Organization database)
identified relevant published/presented studies. References of
papers thus obtained were studied, and most relevant papers in-
cluded. In order to keep the number of cited papers on the rea-
sonable level, for background parts, reviews from highly ranked
Journals have been used/cited instead of original papers. For the
discussion of CS-mediated chemoresistance, all available publica-
tions have been used in order to present the most complete over-
view.
T
hi

s

Fighting Resistant Cancer Cells through Na+/K+-ATPase
Targeting
!

Migrating cells are particularly resistant to cytotoxic
agents: involvement of the NaK β subunit in pro-cell
attachment strategies
Resistance to chemotherapy is believed to cause treatment failure
in more than 90% of patients with metastatic cancer. Because
metastatic cancers originate from migrating cells, specific anti-
migratory strategies should be added to conventional radio-
and/or chemotherapy.
The Na+/K+-ATPase associates with a number of signalling mole-
cules and with the actin cytoskeleton, forming a multiprotein
complex (recently reviewed in [17,18]). The effect of CS, and par-
ticularly ouabain, on the adhesive state of the cell was studied ex-
Mijatovic T and Kiss R.
tensively, and signalling cascades involved in the so-called P→A
mechanism (pump→attachment) were deciphered by Contreras
et al. [12–16]. Contrerasʼ group demonstrated that ouabain af-
fects cell attachment through a complex signalling cascade and
by sending β-catenin to the nucleus, where it is known to act as
a transcriptional cofactor [12–16]. These reports further empha-
sise that the interactions of CS with NaK could markedly affect
cell migration features. Furthermore, Rajasekaran et al. [10] pre-
sented evidence that NaK plays a crucial role in E-cadherin-medi-
ated development of epithelial polarity and suppression of inva-
siveness and motility of carcinoma cells. Their results suggest
that E-cadherin-mediated cell-cell adhesion requires the func-
tion of the NaK β subunit to induce epithelial polarisation and
suppress the invasiveness and motility of carcinoma cells. Tum-
mala et al. [55] revealed that reduced expression of the NaK β1
protein is associated with oxaliplatin resistance in cancer cells
and demonstrated a novel role for this protein in sensitising the
cells to oxaliplatin. Although themechanism by which NaK β1 in-
creases sensitivity to oxaliplatin is not known, it is tempting to
speculate that the cell–cell adhesion function of NaK β1 might
be involved in this process. Importantly, it has been widely re-
ported that NaK β1 subunits are very frequently downregulated
in human epithelial cancer cells [10,11,28–30,56]. The Rajase-
karan group [10,11,28,33,56,57] noted that when these cells
downregulate β1, they detach from each other as a result of a
marked reduction in cadherin expression, a process in which the
Snail transcription factor plays a major role [10,29,56]. Thus,
downregulation of β1 subunits seems essential for epithelial can-
cer cells to become individually invasive and chemoresistant. The
NaK β1 downregulation might result from its rapid degradation
in cancer cells. Yoshimura et al. [58] recently demonstrated that
the α and β subunits of NaK are assembled in the endoplasmic re-
ticulum but are disassembled in the plasma membrane and
undergo different degradation processes, leading to over-expres-
sion of the α subunits and faster degradation of the β subunit.
Thus, restoration of NaK β1 expression might contribute to pre-
venting cancer cell migration and the resulting invasion, metasta-
sis, and chemoresistance. Alternatively, compounds inducing NaK
β1 expression might provide an interesting complement to the
Cardiotonic Steroids-Mediated Na+/K+-ATPase… Planta Med 2013; 79: 189–198



Table 1 Potential of CS to (i) act as apoptosis sensitizers, (ii) act as anoïkis sensitizers, and (iii) be potent inducers of autophagy-like cell death.

Function CS Mechanism Reference

Apoptosis sensitizer oleandrin Apo2L/TRAIL-induced apoptosis via upregulation of death recep-
tors 4 and 5 in non-small cell lung cancer cells

[60]

Apoptosis sensitizer oleandrin, ouabain,
digoxin

stimulate Ca2+ increases and apoptosis in androgen-independent,
metastatic human prostate adenocarcinoma cells

[61]

Apoptosis sensitizer oleandrin oleandrin-mediated expression of Fas that potentiates apoptosis [62]

Apoptosis sensitizer bufalin, bufotalin, gamabufota-
lin

TRAIL-sensitising agents, especially for the triple negative breast
cancer

[63]

Anoïkis sensitizers ouabain, peruvoside, digoxin,
digitoxin, strophanthidin

anoïkis sensitisation in anoïkis-resistant PPC-1 prostate adenocar-
cinoma cells through themitochondrial pathway of caspase activa-
tion and by inducing hypoosmotic stress

[64]

Inducers of autophagy-like cell
death

oleandrin authophagic cell death of pancreatic cancer cells [65]

Inducers of autophagy-like cell
death

19-hydroxy-2′′-oxovoruscharin disorganisation of the actin cytoskeleton and induction of severe
autophagic process

[34]

Inducers of autophagy-like cell
death

19-hydroxy-2′′-oxovoruscharin decrease of Hsp70 expression and induction of the lysosomal
membrane permeabilisation

[59]
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standard anti-metastatic therapy. To the best of our knowledge,
no such compound has been reported.

A number of cancers display intrinsic resistance to
pro-apoptotic stimuli: targeting of NaK α subunit by CS
The malignant transformation of cells is associated with a con-
stellation of pro-survival mutations that increase the cellsʼ resis-
tance to apoptosis. Because most of the agents used in current
anti-cancer therapies are pro-apoptotic agents, agents that in-
duce other types of cell death or act as apoptosis sensitizers
might offer better therapeutic results. Consistent with this idea,
as summarised in l" Table 1, several reports [34,59–65] have
documented the potential of CS, at least in vitro, to (i) act as apo-
ptosis sensitizers, (ii) act as anoïkis sensitizers, and (iii) be potent
inducers of autophagy-like cell death.

Multidrug resistance as one of the major reasons for
the failure of anti-cancer therapy: targeting of the NaK α
subunit by anti-MDR CS
Available research data point to the divergent behaviour of CS
with respect to the induction and repression of MDR. Most
known cardenolides have been reported to antagonise the activ-
ity of several chemotherapeutic agents. Digoxin was shown to
up-regulate MDR1 mRNA, [66] and Huang et al. [67] reported
that ouabain and digitoxin induced resistance to tubulin-depen-
dent anti-cancer drugs such as paclitaxel, colchicine, vincristine,
and vinblastine in androgen-independent human prostate can-
cer. It was suggested that these cardenolides inhibit the G2/M ar-
rest induced by tubulin-binding anti-cancer drugs via an indirect
blockage of microtubule function. Furthermore, a decline in the
transport of these tubulin-dependent anti-cancer drugs into the
nucleus may explain the antagonistic action of these cardeno-
lides. Ouabain provokes reduced doxorubicin-mediated cytotox-
icity in human A549 non-small cell lung cancer (NSCLC), HT29
colon cancer, and U1 melanoma by decreasing doxorubicin-in-
duced topoisomerase-mediated DNA strand breakage [68]. This
response indicates that altered ionic gradients are a potential
cause of resistance to drugs that use topoisomerase II as a target
[68]. Additionally, Ahmed et al. [69] reported that cisplatin accu-
mulation in oral squamous carcinoma cells is regulated by NaK
and thus, its inhibition markedly reduced intra-cellular cisplatin
accumulation. In contrast, the reports on less thoroughly investi-
Mijatovic T and Kiss R. Cardiotonic Steroids-Mediated Na+/K+-ATPase… Planta Med
gated CS indicate the potential usefulness of these CS to combat
chemoresistant cancers [52–54,70]. Bufalin has been reported to
reverse multi-drug resistance in some human leukemia MDR
cells. Indeed, Efferth et al. [70] reported that bufalin caused a sig-
nificant increase in the accumulation of daunorubicin in CEM/
VLB100 and CEM/E1000 cells. Moreover, some cardenolides from
Calotropis procera, Pergularia tomentosa, and Nerium oleander
can overcome MDR [52–54]. Interestingly, some of these com-
pounds can overcome MDR from multiple origins. Indeed, we
previously reported that 19-hydroxy-2′′oxovoruscharin-mediat-
ed potent anti-cancer activity is not limited by the intrinsic MDR
conferred by the over-expression of key drug-transporter pro-
teins acquired as a result of exposure to a range of chemothera-
peutic agents or loss of wild-type p53 [52]. This was confirmed
in human cancer cell lines of different origin including HeLa-de-
rived KB carcinoma, MDA‑MB‑231 breast cancer, GLC4 small cell
lung cancer, SW-1573 and A549 NSCLC, S1 and HCT116 colon
cancer, HL-60 leukaemia, and adenovirus transformed HEK293
cells; these were selected given their resistance to various che-
motherapeutic agents (adriamycin, vincristine, cisplatin, oxali-
platin, mitoxantrone, hydroxyurea) and/or their over-expression
of different MDR-related proteins (ABCB1, ABCC1 (MRP1), ABCC2,
ABCC10, ABCG2 (BCRP), and MVP). In general, the sensitivity of
all tested cell lines to 19-hydroxy-2′′-oxovoruscharin was in the
low nM range (IC50 range for both sensitive and resistant cells:
7–32 nM). It must be emphasised that in cardenolides from the
Digitalis and Strophantus plant species (such as digoxin and digi-
toxin), steroidal rings A/B and C/D are cis fused, while rings B/C
are trans fused. Such ring fusion gives the aglycone nucleus of
these cardiac glycosides a characteristic “U” shape. In contrast,
in cardenolides produced by plants from the milkweed family
Asclepiadaceae (such as calactin uscharin and 2′′-oxovoruscharin)
A/B rings are trans fused resulting in rather flat structures.
Whereas the cardiac glycosides from Digitalis and Strophantus
species carry sugar units linked through the 3β-OH of the steroid
aglycone (single link), some of those produced by plants from the
milkweed family Asclepiadaceae contain a single sugar in a
unique “dioxanoid” attachment (double link; [27,34,35,49,71–
73]). The consequences of these structural differences on the
NaK binding of these compounds have been reported previously
[34,35,44] and indicate the markedly more potent binding (par-
ticularly to NaK α1 subunits) of the trans-trans-cis cardenolides.
2013; 79: 189–198
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Hypoxia-mediated drug resistance:
targeting of the NaK α subunit by CS
For decades, tumour hypoxia has been known to have a negative
effect on therapy outcomes (recently reviewed in [74]). Hypoxia
inhibits tumour cell proliferation and induces cell cycle arrest, ul-
timately conferring chemoresistance because anti-cancer drugs
preferentially target rapidly proliferating cells. However, this
knowledge has been largely neglected during screening for anti-
proliferative substances in vitro, resulting in hypoxia-mediated
failure of most newly identified substances in vivo. The hypoxia-
inducible factor (HIF) family of hypoxia-inducible transcription
factors represents the main mediator of the hypoxic response
and is often upregulated in human cancers. The oxygen-regulat-
ed HIF isoforms, HIF-1α and to a less extent HIF-2α, have been as-
sociated with chemotherapy failure, and interference with HIF
function holds great promise for improving future anti-cancer
therapy (recently reviewed in [74]). Accordingly, Zhang et al.
[75] screened a library of drugs that are in clinical trials or in use
for inhibitors of HIF-1. Twenty drugs inhibited HIF-1-dependent
gene transcription by > 88% at a concentration of 0.4 µM. Eleven
of these drugs were cardiac glycosides, including digoxin, oua-
bain, and proscillaridin A, which inhibited HIF-1α protein synthe-
sis and the expression of HIF-1 target genes in cancer cells [75].
Digoxin administration increased the latency and decreased the
growth of tumour xenografts, whereas treatment of established
tumours resulted in growth arrest within one week. Enforced ex-
pression of HIF-1α by transfection was not inhibited by digoxin,
and xenografts derived from transfected cells were resistant to
the anti-tumour effects of digoxin [75], demonstrating that HIF-
1 is a critical target of CS for cancer therapy.

Cytoprotective effects caused by constitutively activated
NF-κB: targeting of the NaK α subunit by CS
Constitutive or drug-induced activation of the NF-κB signalling
cascade represents one of the major pathways by which tumour
cells avoid cytotoxicity [76–78]. Many tumour cells display con-
stitutively high levels of nuclear NF-κB activity due to the hyper-
activation of the NF-κB signalling pathways or to inactivating
mutations in the regulatory Iκ-B subunits [76–78]. Several CS
have already been shown to interfere with the NF-κB pathway
[51,79–81]. We previously reported that 19-hydroxy-2′′-oxovor-
uscharin (UNBS1450) is able to sensitise chemoresistant, highly
aggressive, and naturally therapy-resistant A549 NSCLC cancer
cells by deactivating the cytoprotective effects caused by consti-
tutively activated NF-κB [51]. This UNBS1450-induced deactiva-
tion of the NF-κB pathways occurs at several levels, including
both the inhibitory I-κB portion of the NF-κB signalling pathway
and its stimulatory p65/Rel-A NF-κB portion. With respect to the
I-κB portion of the NF-κB signalling pathway, the compound acts
at the levels of i) the upregulation of inhibitory protein expres-
sion (as observed for I-κBβ), ii) the downregulation of the phos-
phorylation levels of I-κBα, and iii) the downregulation of the ex-
pression of CDC34.With respect to the stimulatory p65/Rel-A NF-
κB portion, the compound induces i) the downregulation of the
expression levels of p65, ii) the downregulation of the DNA bind-
ing capacity of the p65 subunit, and iii) the downregulation of the
NF-κB transcriptional activity [51].

Howmight CS overcome cancer cellsʼ chemoresistance?
We were able to show that NaK α1 targeting by siRNA induced
the death of resistant cancer cells with the same morphologic
features as those induced by 19-hydroxy-2′′-oxovoruscharin
Mijatovic T and Kiss R.
[35]. Thus, cancer cells need abundantly expressed NaK for their
survival, which seems not to be the case for normal, non-tumour
cells [35].
The observed hypersensitivity of some MDR cells to CS [52] sug-
gests a rather specific MDR targeting. The multifactorial nature of
MDR indicates that it may be important to develop modulators
that can simultaneously inhibit the expression of the drug trans-
porters and the key signalling pathways, which are responsible
for this phenomenon [8,82]. The available, yet scarce, data argue
in favour of this double mechanism: (a) the inability of tumour
cells to acquire resistance to 19-hydroxy-2′′-oxovoruscharin, (b)
genome-wide microarray analyses performed after 19-hydroxy-
2′′-oxovoruscharin treatment of cancer cells revealed downregu-
lation of different MDR-related mRNAs (our unpublished data),
and (c) by binding to the sodium pump, CS affect multiple signal-
ling pathways [27,37,45,48,50]. Furthermore, post-translational
modifications seem to play major roles in the MDR-related regu-
lation of protein expression. N-glycosylation was shown to con-
tribute to the stability of P‑gp [83], and inhibiting glycosylation
reducedmembrane-associated P‑gp and altered the MDR pheno-
type [84]. Consistent with this observation, Beheshti Zavareh et
al. [85] identified CS as the most potent inhibitors of the N-glyco-
sylation pathway. Zhang et al. [86] demonstrated that the stabili-
ty and function of P-glycoprotein can be regulated by the ubiqui-
tin-proteasome pathway and suggested that modulating the
ubiquitination of P-glycoprotein might be a novel approach to
the reversal of drug resistance. Consistent with this suggestion,
we demonstrated that 19-hydroxy-2′′-oxovoruscharin induced
an increase in the accumulation of ubiquitinylated proteins in
the MDR A549 tumour cells and that some other ubiquitinyla-
tion-related enzymes are also affected by this CS [51].
Two major mechanisms might be responsible for CS-induced ef-
fects on chemoresistant cancer cells. The first mechanism relates
to the inhibition of the glycolytic pathway and reduction of intra-
cellular ATP levels [87–89] because these cancer cells have in-
creased metabolic requirements for ATP [87–89]. This hypothesis
is also supported by our data on the 19-hydroxy-2′′oxovoru-
scharin-induced drop in intra-cellular ATP concentrations in can-
cer, but not in normal, cell lines [34,35,90]. It is interesting that
aerobic glycolysis is linked to the activity of Na+/K+-ATPase and
that CS can inhibit aerobic glycolysis (reviewed in [91]). The
mechanism by which a decrease in the activity of the Na+/
K+-ATPase produces glycolysis inhibition is not completely
understood. However, it has been reported that glycolysis is in-
hibited by ATP via an allosteric inhibition of phosphofructokinase
(PFK), a key enzyme in the control of glycolysis. Thus, cells need
to hydrolyse ATP in order to release PFK inhibition and activate
glycolysis. One of the major ATPases involved in the hydrolysis
of ATP is indeed Na+/K+-ATPase [91]. Thus, Na+/K+-ATPase inhibi-
tion by CS could prevent the hydrolysis of ATP, which in turn may
inhibit PFK and glycolysis, leading ultimately to cancer cell death.
In addition, glucose transport into cells is mediated by facilitative
glucose transporters (GLUTs) and in some cell types (such as
small intestine and renal epithelial cells) by sodium glucose
transporters (SGLT), the activity of which depends on Na+/
K+-ATPase [91]. Therefore, Na+/K+-ATPase inhibition by CSmay al-
so reduce glucose transport into these cells resulting in further
inhibition of glycolysis [91].
The second mechanism relates to CS-induced changes in cell ion
concentrations, with an increase of Ca2+i following the Nai in-
crease due to NaK blockage contributing to the increase of MDR-
1 mRNA [92]. In contrast, CS do not affect cell ion concentrations
Cardiotonic Steroids-Mediated Na+/K+-ATPase… Planta Med 2013; 79: 189–198
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when used at their IC50 or concentrations that decrease MDR
[52]. Additional data are, however, needed to decipher the details
of the mechanism(s) by which CS circumvent cancer cell chemo-
resistance.
In summary, the multiplicity of potential targets might underlie
the ability of CS to overcome the multiple anti-cell death mecha-
nisms established in cancer.

Which signalling pathways are affected by
NaK targeting in resistant cancer cells?
Although CS-mediated signalling has been investigated in normal
cells (indicating the involvement of ERK, MAPK, PLC, PKC, and
Ras-Raf), only a few studies of NaK-mediated signalling in cancer
cells in general and in chemoresistant cancer cells in particular,
have been reported.
By binding to the sodium pump, CS elicit several downstream sig-
nalling cascades affecting a number of different targets (reviewed
in [27,37,45,48,50,93]). Among the multiple targets are certain
key markers. One pathway that might link NaK and MDR is the
one related to c-Myc because c-Myc is involved in regulating the
expression of MDR [94] and P‑gp, the product of the MDR1 gene
[95]; c-Myc activates MDR-1 transcription by binding the E‑box
motif (CACGTG) in the MDR1 gene promoter [96]. Our data indi-
cate that (i) CS anti-tumour efficiency is correlated with the abil-
ity to down-regulate c-Myc [97] and (ii) 19-hydroxy-2′′-oxovoru-
scharin impairs the expression of five Myc-related genes [90],
suggesting a broad effect on the c-Myc pathway. As a reminder,
the c-Myc oncoprotein regulates transcription of genes associ-
ated with cell growth, proliferation, and apoptosis [98]. The c-
Myc protein is required for activating ribosomal DNA transcrip-
tion in response tomitogenic signals, and it coordinates the activ-
ity of all three nuclear RNA polymerases, thereby playing a key
role in regulating ribosome biogenesis and cell growth [99,100].
Stimulation of ribosomal RNA synthesis by c-Myc is a key path-
way driving cell growth and tumourigenesis [99]. Furthermore,
oncogenic signalling through the Myc pathways directly controls
glutamine uptake, which is of vital importance in cancer cells that
must satisfy the metabolic requirements associated with anabo-
lism and rapid growth rates [99]. Experimental evidence shows
that inhibiting c-Myc significantly halts tumour cell growth and
proliferation [101].
The way cardiotonic steroids down-regulate c-Myc expression
has not been deciphered. Among the possible mechanisms are:
(i) rapid compound-induced increases in ROS (as we previously
reported [90]), which can inhibit gene expression partly by the
oxidation of Sp1, which decreases its DNA-binding activity and
contributes to the suppression of a number of genes, including
c-Myc [102]; and (ii) compound-induced STAT3 downregulation
(as we previously reported [90]).
It is important to consider Na+/K+-ATPase as a signal transducer
able tomediate CS-induced effects in a compound, concentration,
and cell type-specific manner [27,37,45,93]. Thus, while binding
to the same receptor, CS display different spectra of signatures in-
dicating the differences in their modes of action and subsequent
effects on cell behaviour. Indeed, using Fourier Transform Infra-
red (FTIR) analyses on the prostate cancer PC-3 cell line treated
with four different CS (two cardenolides and two bufadieno-
lides), we demonstrated the differences in the signatures of the
metabolic changes induced by these four compounds [103]. This
could explain, at least partly, the differences in CS behaviours to-
ward the MDR of cancer cells.
Mijatovic T and Kiss R. Cardiotonic Steroids-Mediated Na+/K+-ATPase… Planta Med
Finally, a question remains about the possible intracellular roles
of NaK and CS. Several studies showed NaK internalisation upon
CS binding, and some of them demonstrated NaK accumulation
in the nuclei, suggesting a direct role of NaK in gene expression
[104,105]. In contrast, the internalisation of CS together with
NaK has still not been demonstrated. If some CS could undergo
internalisation, this might explain, at least partly, why certain CS
are substrates of P‑gp and others are not.

Potential NaK isoform-related specificities
in overcoming cancer cellsʼ resistance
Using a baculovirus expression system for studying Na+/K+-AT-
Pase-mediated ouabain effects, Pierre et al. [106] showed that
there were important isoform-specific differences in NaK signal-
ling. It is important to remember that different CS display differ-
ent NaK inhibitory properties and that most, if not all, of them
display higher binding affinity for the α2 and α3 isoforms com-
pared to the α1 isoform [107]. Furthermore, conspicuous kinetic
differences exist among sodium pump isozymes from different
species in their interaction with CS [107–110]. According to
Crambert et al. [108], human α/β complexes formed with α1 and
α3 subunits have slow dissociation rate constants corresponding
to half-lives (t1/2) between 30 and 80min, whereas those formed
with α2 have rapid dissociation kinetics with t1/2 of about 4–
5min. Similarly, the association kinetics of ouabain with human
Na+/K+-ATPase isozymes followed the order α2 >> α3 = α1, with
the times required to reach equilibrium binding being approxi-
mately 10min (α2,β) and 60min (α1,β and α3,β). The association
rate of ouabain seems to depend on the steroid moiety, whereas
the dissociation rate depends on both the steroid and the sugar
moieties. Several amino acids are involved in the ouabain binding
kinetics [108,111]. Whether there is isoform-specific mediated
sensitivity towards the CS that display anti-cancer effects re-
mains an open question. Currently, most of the published data
link the α1 NaK subunit over-expression with cancer progression
[27,31,32,34–38]. Newman et al. [45] suggested that rather than
an increase or decrease in NaK α subunit expression, the ratio of
α3 to α1 should be used as the prognostic indicator for candidate
patients to be treated with CS. This proposal was based on their
data obtained with pancreatic cancer cell lines. The data suggest
that the higher the ratio of α3 to α1, the greater the sensitivity to
oleandrin. Unfortunately, this type of investigation cannot be
conclusively conducted with a large panel of human cancer cell
lines because the NaK α subunit expression is significantly influ-
enced by culture conditions in vitro [112,113], which generally
lead to the sole expression of α1.

CS-mediated NaK targeting:
from bench to bedside – how far are we?
As already emphasized above, interest in developing the CS as
anti-cancer agents has grown progressively in the last two dec-
ades despite their potential cardiotoxic effects and very narrow
therapeutic index. Within the past 15 years, there has been a
marked increase in the number of reports of CS-induced anti-
cancer effects (recently reviewed in [26,27,37,39,45,47,48]).
While in vitro anti-cancer properties of CS have been widely
studied, few publications have demonstrated their in vivo activ-
ity in animal models or in clinical studies. Either these com-
pounds demonstrated appreciable in vivo anti-tumour activity
but were quite toxic (e.g., ouabain) or they were found to be rela-
tively devoid of anti-tumour activity at the tolerated dose levels
(e.g., digoxin). The studies published by Perne et al. and Hallböök
2013; 79: 189–198



Fig. 3 Summary of postulated mechanisms resulting from Na+/K+-ATPase
targeting and leading to overcoming of cancer cells chemoresistances.
Pathways contributing to chemoresistance and MDR are represented in el-
lipses while their counteracting by Na+/K+-ATPase targeting is represented
by block arrows.
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et al. [114,115] raised the concern about the potential use of CS in
therapy since their results demonstrated that CS (digoxin and
digitoxin) induced cell death in human cells by inhibiting general
protein synthesis, pointing to the need of very detailed assess-
ment of mechanism of action of potential therapeutic CS. Despite,
recently, Platz et al. [116] reported on a novel two-stage, trans-
disciplinary study identifying digoxin as a possible drug for pros-
tate cancer treatment. They investigated whether any clinically-
used drugs might have utility for treating prostate cancer by cou-
pling a high-throughput laboratory-based screen and a large,
prospective cohort study. Stage 1 was based on an in vitro pros-
tate cancer cell cytotoxicity screen of 3,187 compounds in which
digoxin emerged as the leading candidate given its potency in in-
hibiting proliferation in vitro (mean IC50 = 163 nM) and common
use. Stage 2 was based on evaluating the association between the
leading candidate drug from stage 1 and prostate cancer risk in
47884 men followed 1986–2006 and uncovered that regular di-
goxin users had a ~ 25% lower prostate cancer risk. Thus this
transdisciplinary approach for drug repositioning provides com-
pelling justification for further mechanistic and possibly clinical
testing of this class of compounds as drugs for cancer treatment.
As a reminder, retrospective epidemiological studies conducted
by Stenkvist revealed some intriguing results: very few patients
that underwent CS treatment for heart problems died from
cancer [41]. In a 20-year follow-up [117], Stenkvist has reported
that the death rate from breast carcinoma (excluding other
causes of death and confounding factors) was 6% (two out of 32)
among patients who were treated with digitalis, compared with
34% (48 of 143) among patients who were not treated with digi-
talis (p = 0.002). On the other hand, a very recent report from Big-
gar et al. [118] reported an increasing risk of breast cancer in
women taking digoxin for cardiac conditions: 2.05% (2144 out of
104648) of women using digoxin developed breast cancer. Two
oncology clinical trials involving digoxin have recently been com-
pleted: i) a Phase I clinical trial (ClinicalTrials.gov Identifier
NCT00650910) combining digoxin with Lapatinib (an oral recep-
tor tyrosine kinase inhibitor that targets HER2 and the EGFR) in
treatment for metastatic ErbB2 breast cancer and ii) a Phase II
clinical trial (ClinicalTrials.gov Identifier NCT00281021) combin-
ing daily digoxin with Erlotinib, an EGFR inhibitor, in treatment
for NSCLC. Unfortunately, a remarkable digoxin-mediated anti-
tumour effect was not observed in any of these trials, emphasis-
ing the need for more clinically efficient anti-tumour CS. Interest-
ingly, it is somewhat perplexing to observe the large number of
patents filed (see [39]) for novel anti-cancer CS and the very lim-
ited number of these compounds being further assessed in pre-
clinical investigations and clinical trials. Indeed, a very limited
number of new CS are presently being evaluated in clinical trials:
(i) Nerium oleander extract (PBI-05240) is in Phase I clinical trials
(ClinicalTrials.gov Identifier NCT00554268) at the MD Anderson
Cancer Center and an interim analysis presented at 2009 ASCO
Conference reported that 20% of evaluable patients achieved sta-
ble disease for more than 4 months [119]; (ii) one modified car-
denolide, UNBS1450, selected to minimize cardiotoxicity while
preserving potent anti-proliferative properties [49], is also cur-
rently in Phase I clinical trials in Europe (Belgium and The Neth-
erlands); and (iii) a traditional Chinese medicine Huachansu
(containing mainly bufadienolides) is currently being evaluated
in a Phase II clinical trial along with gemcitabine in pancreatic
cancer patients (ClinicalTrials.gov Identifier NCT00837239). Neg-
ative perceptions of CS toxicity and reticence of medical commu-
nity might be part of the explanation for the observed discrepan-
Mijatovic T and Kiss R.
cy. Furthermore, elevated costs of pre-clinical investigations
might be one of the major reasons for the lack of translational re-
search, knowing that large number of the patent applications for
novel anti-cancer CS came from academic investigators. On the
other hand, the lack of available clinical data evidencing safety
margin and therapeutic window of assessed new anti-cancer CS
prevent pharmaceutical industry to consider large investments
in order to investigate CS as potential new anti-cancer com-
pounds.
Conclusions
!

Considering the severe limitations of current cancer chemother-
apy, it is desirable to identify novel drugs that (i) are active
against otherwise resistant tumour cells and (ii) modulate resis-
tance to established drugs. An ideal compound would contain
both features. Compelling evidence from published research data
suggests that some cardiotonic steroids could act as such poten-
tial “two-in-one” drugs able to circumvent the chemoresistance
Cardiotonic Steroids-Mediated Na+/K+-ATPase… Planta Med 2013; 79: 189–198
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of cancer cells. It is the multiplicity of potential targets rather
than the specific action on one particular target that might en-
able certain cardiotonic steroids to overcome the multiple anti-
cell death mechanisms established in cancer cells. While no pre-
cise mechanism has yet been deciphered for how NaK targeting
might overcome cancer chemoresistance, several hypotheses
converge to indicate the most probable pathways (summarized
in l" Fig. 3). These pathways include the involvement of the NaK
β subunit in invasion and the NaK α subunits in chemosensitisa-
tion by means of specific CS-mediated (a) apoptosis and anoïkis-
sensitisation, (b) regulation of expression of MDR-related genes,
(c) post-translational regulation, including glycosylation and
ubiquitinylation, of MRD-related proteins, (d) c-Myc downregu-
lation, (e) HIF downregulation, (f) downregulation and deactiva-
tion of NF-κB pathways, (g) inhibition of the glycolytic pathway
and reduction of intra-cellular ATP levels, and (h) induction of
non-apoptotic cell death.
Thus, a completely new way of targeting chemoresistant cancer
cells would rely on targeting the sodium/potassium pump, i.e.,
the Na+/K+-ATPase. This attractive hypothesis urgently needs
medical validation, and it is expected that all the results originat-
ed from fundamental research would motivate further transla-
tional and clinical research aiming on use of specially designed
CS for treatment of chemoresistant malignancies.
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