Utility of the “bear claw”, or over-the-scope clip (OTSC) system, to provide endoscopic hemostasis for bleeding posterior duodenal ulcers

The “bear claw”, or over-the-scope clip (OTSC) system (Ovesco Endoscopy, Tübingen, Germany), is an innovative clipping device made of superelastic biocompatible nitinol [1–3]. This device was developed to close wall defects of the luminal gastrointestinal tract, such as perforations, anastomotic leaks, and fistulas [1, 2]. The use of the “bear claw” in humans is still limited, but due to the excellent capabilities of the “bear claw” to close large mucosal defects, more reports on its efficacy are being published [2, 3]. Here we present the use of the “bear claw” to provide hemostasis of large ulcers of the posterior duodenal wall.

Four patients (three women and one man, ages 82–90, mean age 84.5) presented with massive gastrointestinal bleeding. All of the patients had hypotension upon presentation. The patients’ hemoglobin ranged from 6 to 12 g/dL, with a mean of 9 g/dL (normal 12–18 g/dL). All patients

Fig. 1 The cap with the over-the-scope clip (OTSC) is loaded onto the tip of the scope, similarly to the esophageal banding device.

Fig. 2 a The loaded over-the-scope clip (OTSC) system passes easily through the esophagus. b Location of the bleeding vessel through the cap of the OTSC. c An ulcer with a visible vessel is sucked into the cap with a loaded OTSC. d The deployed OTSC.
The bleeding lesion was located (● Fig. 2a). Once this was accomplished, the “bear claw” (OTSC) was released by turning the handle attached to the entrance to the working channel of the scope (● Fig. 3). The OTSC clip clinched enough tissue, including the visible vessel. Hemostasis was thus successfully achieved (● Fig. 2d). All patients were discharged in a stable condition. These cases are interesting for various reasons. First, we add to the growing clinical experience using this novel device. The OTSC system is an innovative clipping device made of superelastic biocompatible nitinol, which allows for the entrapment of a large amount of tissue, allowing closure of fistula holes and, as shown in these cases, achieving hemostasis [1–3]. Second, we show that the OTSC is effective for obliterating ulcers with bleeding vessels located in a difficult position (in the posterior duodenum). It is well known that these ulcers are at a higher risk and also more difficult to treat because of their awkward position [4]. In a previous study, we demonstrated that using the colonoscope allowed for targeted endoscopic therapy of these lesions, as the working channel is on the right side. Most gastroscopes have working channels on the left side, making it difficult to apply endoscopic hemostasis [4]. In addition, standard clips often fall off these lesions and induce more bleeding by lacerating the vessel. Although using a heater probe is a proven method to treat lesions similar to those presented in this case, this modality is mainly available in the USA and some Asian countries, but not in most European countries. However, using a heater probe can result in perforation [5]. Finally, we show that the placement of such a clip is very easy, resulting in potentially life-saving hemostasis.

Endoscopy_UCTN_Code_TTT_1AO_2AD

Competing interests: None

References

Bibliography

DOI http://dx.doi.org/10.1055/s-0032-1325737
Endoscopy 2012; 44: E412–E413
© Georg Thieme Verlag KG
Stuttgart - New York
ISSN 0013-726X

Corresponding author
K. Mönkemüller, MD, PhD
Department of Internal Medicine, Gastroenterology and Infectious Diseases, Marienhospital Bottrop
Josef-Albers-Straße 70
46236 Bottrop
Germany
Fax: +49-2041-1061019
moenkmuller@yahoo.com