Zusammenfassung

The objectives of TQA are to ensure that the equipment performance of such equipment. It is currently not possible to reliably predict absolute clinical performance setting of the equipment used by individual sonographers influence the performance of the equipment. Finally, eventual preset of the system which are chosen by the manufacturer depend on the design characteristics of the system, i.e. transducer.

1.1 Objectives for performing regular TQA

▶ act as official EFSUMB recommendations for TQA
▶ identify the most suitable parameters
▶ identify the most suitable test methods
▶ describe how to perform TQA most effectively and efficiently
▶ propose (partly) easy-to-use methods
▶ introduce (clinically supportable) testing intervals
▶ inform the user about essential TQA knowledge or necessary qualification.

A clean and hygienic equipment including transducers, control panel, monitor, and peripherals is mandatory each time before a patient is scanned or the equipment is in standby but will not be covered but supposed in this guideline.

Relevant publications and international standards are listed in the reference chapter at the end, while the suitable test methods and test devices are given in the annex.

1.2 Guideline & Concept validation

The concept described within this guideline will be regularly evaluated to provide state-of-the-art QA procedures, skills and evaluation methods.

2. TQA levels and intervals

A regular technical QA (TQA) scheme starts with a primary or acceptance test (level 1) when the device is first incorporated into a QA program (regardless of whether the device is new or already in use). With this test, the base-line performance is determined that also will be used as a reference for regular objective testing (level 2).

Simple user tests (level 1) are performed on an individual regular basis without special equipment to evaluate the basic performance and function. (Semi-) annual extensive and objective testing of imaging quality is performed by using tissue mimicking phantoms (level 2).

The concept described within this guideline will be regularly evaluated to provide state-of-the-art QA procedures, skills and evaluation methods.

Functions as expected,
is safe for clinical use (and within internationally accepted limits) and
performs consistently over time.

The features to be measured for the characterization of performance are related to the transducer design, its performance and its eventual degrading due to local mechanical defects.

Meanwhile it is evidenced that transducers in clinical practice are subject to degradation in performance with annual failure rates of 10 – 13 % [31] or unacceptably high incidence (40 %) of detected defective transducers [32]. This potentially can lead to patient misdiagnosis or under-diagnosis [33]; or even missed diagnosis (of heart disease) [34].

Furthermore, the imaging performance features are to be related to the quality of the combination of the transducer and electronic system: the overall sensitivity, the spatial and gray level characteristics of the images, as well as the measurement accuracy, which are all of direct clinical importance. A degradation of the system leads technically to a decrease in displayed image quality, due to increase of side lobes within the beam profile or pronounced loss of sensitivity for example [26, 34].

The need to test the imaging equipment regularly is obvious to guarantee full functionality. Also testing intervals of less than a year are discussed and recommended for frequently used equipment [34].

However, to establish and to monitor the performance of an ultrasound imaging system a well defined set of performance features and related measurement procedures are required, as well as test image analysis software and documentation.

Some international standards and recommendations have been introduced over the last decades and commercial testing objects mostly for B-mode imaging are available. Furthermore, computer-aided test image analysis has been developed by some parties which offers more objective and repeatable methods for assessment of performance.

2.1 Objectives for performing regular TQA

The quality of ultrasound B-mode images is first of all greatly dependent on the design characteristics of the system, i.e. transducer, the basic electronics and the pre- and post-processing of the transmitted and received ultrasound signals. In addition, the so-called presets of the system which are chosen by the manufacturer influence the performance of the equipment. Finally, eventual preference settings of the equipment used by individual sonographers are also of importance for the performance characteristics.

It is currently not possible to reliably predict absolute clinical performance of such equipment.

The objectives of TQA are to ensure that the equipment...
formed at suitable intervals to monitor changes or deterioration over time and to guarantee that effective remedial action can be taken.

To help to minimise the risk to the patient from acoustic exposure hazards in the form of tissue temperature elevation or mechanical bio-effects, manufacturers provide an on-screen display of Thermal Index (TI) and Mechanical Index (MI), as defined in IEC 62 359 [20].

The values are affected by many parameters, including the transducer properties, application presets, and user control settings (e.g. operating mode, focus, field of view). As the user makes risk-benefit judgements based on these displayed values, they need to be reliable and accurate.

However, verification of the accuracy of displayed safety indices or acoustic output can only be performed by centres with suitable equipment and expertise and therefore these tests are included as an optional testing procedure (level 4).

Depending on the individual needs of the clinics and actual operating time of the ultrasound equipment different parameters and intervals for checking as well as different TQA skills of personnel may be necessary.

2.1 Performance tests – Level 1

User tests (“5-min test”)

These tests are intended for the user or personnel supervising this equipment. They are simple to perform once the scheme and setup have been practised a few times.

The tests act as a first step within a malfunction detection process and should be done at regular intervals. No sophisticated additional equipment, special evaluation software, or time consuming procedures are needed.

An overview of recommended parameters is given in the Table 2, while the methods proposed are given in the paragraph further on.

2.2 Performance tests – Level 2

Tests with test objects

The tests listed in Table 3 are performed with additional test equipment (test objects/phantoms, test pattern) and by software-based evaluation and documentation. With these tests the technical function of the console and transducers can be monitored and evaluated. The tests are performed with the preset for quality assurance as determined with the level 3 test.

In cases where the user tests have shown uncertain results, these tests should be performed for clarification but must be performed also separately on a (semi-) annual basis. Additional equipment and special detailed knowledge is needed.

An overview of recommended parameters is given in the Table 3 below, while the methods proposed are given in the paragraph later on.

2.3 Performance tests – Level 3

Advanced tests with test objects (acceptance test)

When equipment is newly introduced into a QA scheme, several parameters have to be measured and quantified to acquire information on the technical performance of this equipment. This test is called acceptance or primary test and establishes initial data about the different parameters used for further long-term investigations. Level 3 tests consist of level 2 tests, setting baselines for level 1 tests and some advanced tests (e.g. separate transducers function checks) and are performed with test objects and other specialized devices.

A preset for the (semi-) annual Level 2 test should be selected or made, stored and recorded according to the QA software in use. In this preset, the overall gain, the TGC, the TI and/or MI, the position of the in-plane focus and the total depth of the images is stored.

These tests normally document the baseline performance of the equipment and should not only be done once but whenever a re-
pair, profound maintenance or a software update has been done, that cause changes to the initial performance data. An overview of recommended parameters is given in the Table 4 below, while the methods proposed are given in the paragraph later on.

2.4 Performance tests – Level 4 (optional)

Tests for acoustic safety indices & transducer temperature

Level 4 tests are specialised checks that require specific test equipment and skilled and trained personnel. They are not repeated on a regular basis but may be performed at initial acceptance or for special clinical needs (e.g. bio-effects studies) where it is essential to know this information or upon user requests (optional tests).

Some of the listed tests can be performed by skilled personnel with available equipment on-site (marked #), while the accurate verifications are reserved to expert centres (it should be noted that the output of equipment could vary after transducer exchange or software update).

An overview of recommended parameters to know is given in Table 5 below, while the methods will be determined in the expert centre performing the measurements.

3. Test equipment

3.1 Test objects/phantoms

This equipment is needed for regular measurements at level 2 and higher. There are a number of commercial companies on the market that are offering a variety of different objects, phantoms or equipment to measure the listed parameters (Annex 1).

- test objects/phantoms suitable to perform the requested tests (level 2/3) for advanced and specialised tests (level 3 & level 4):
 - manufacturer test report containing the required transducer information or
 - electronic equipment to check transducer function separately
 - calibrated hydrophone measurement system (according to IEC 62127–3 [18])
 - radiation force balance (according to IEC 61161 [12])
 - thermal test object (according to IEC/TS 62306 [19])
 - electronic thermometer or fine wire thermocouple (accuracy ±0.1 °C)
 - infrared thermometer (accuracy ±0.5 °C)
 - monitor test pattern generator (according to IEC 62563–1 [22]; DIN V 6868–57 [24])

Table 3 Overview of tests within level 2.

<table>
<thead>
<tr>
<th>test evaluation possible subsequent action</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution (lateral, axial)</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>STC or maintenance</td>
</tr>
<tr>
<td>maximum depth of penetration</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
<tr>
<td>uniformity (objective)</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
<tr>
<td>monitor function</td>
</tr>
<tr>
<td>test pattern</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
<tr>
<td>dynamic range/contrast resolution (limited)</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
</tbody>
</table>

1 Limited to some aspects – see Annex 2.
(STC: separate transducer check.)

Table 4 Overview of tests within level 3.

<table>
<thead>
<tr>
<th>test evaluation possible subsequent action</th>
</tr>
</thead>
<tbody>
<tr>
<td>all level 2 tests plus:</td>
</tr>
<tr>
<td>elevation focus & resolution</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>STC or maintenance</td>
</tr>
<tr>
<td>caliper calibration (distance, area)</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
<tr>
<td>dynamic range/contrast resolution</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
<tr>
<td>postprocessing gray level encoding</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
<tr>
<td>transducer element performance</td>
</tr>
<tr>
<td>software</td>
</tr>
<tr>
<td>maintenance</td>
</tr>
</tbody>
</table>

Table 5 Overview of tests within level 4 (optional and upon [user] requests only).

<table>
<thead>
<tr>
<th>test measurement possible subsequent action</th>
</tr>
</thead>
<tbody>
<tr>
<td>check that displayed MI/TI-values at switch-on correspond to preset values given in technical manual</td>
</tr>
<tr>
<td>visually</td>
</tr>
<tr>
<td>inform manufacturer</td>
</tr>
<tr>
<td>MI verification for each transducer & operational mode</td>
</tr>
<tr>
<td>calibrated hydrophone</td>
</tr>
<tr>
<td>inform manufacturer</td>
</tr>
<tr>
<td>TI verification for each transducer & operational mode</td>
</tr>
<tr>
<td>radiation force balance, 1 cm aperture</td>
</tr>
<tr>
<td>inform manufacturer</td>
</tr>
<tr>
<td>measure temperature of transducer face in air</td>
</tr>
<tr>
<td>thermocouple, IR thermometer</td>
</tr>
<tr>
<td>maintenance/inform manufacturer</td>
</tr>
<tr>
<td>measure temperature of transducer face in tissue contact</td>
</tr>
<tr>
<td>thermocouple, thermal test object</td>
</tr>
<tr>
<td>maintenance/inform manufacturer</td>
</tr>
</tbody>
</table>

Test can be performed by skilled personnel and available equipment on-site.

IR: infrared.

3.2 Acquisition & evaluation software

For a full documentation and reproducible objective evaluation of the QA tests it is imperative to use software-based test image analysis. At present there are some commercial and scientific software packages available that can be used for these purposes as supporting tools. These will enable an assessment in a fast and reproducible way.

It is recommended to use software for acquisition and objective evaluation for the level 2 and 3 tests; depending on the project or implemented quality management system it might be necessary to use software-based test documentation for level 1, too (optional). Although digital test images should be used for later analysis it is possible to convert displayed analog ultrasound images of older machines to digital formats to use them for analysis, too; but be aware that not all conversion/capture devices (so called frame grabbers or video digitisers) provide reliable and consistent digital images finally, therefore care should be exercised in selecting and setting up such devices.

Some examples of known software for QA purposes are listed below:

- **UltralQ**
 (Cablone Medical, NL)
 this company has developed a software application for automated evaluation and reporting of ultrasound systems dedicated to level 2/3 applications.

- **QA4US**
 (Radboud University, Nijmegen, NL)
 a modular software package that can be used for level 2/3 test requirements
 (www.qa4us.eu); accessed 26.6.2012

- **FirstCheck**
 (Ultrasound-Lab, ZMPBMT, Medical University Vienna, A)
 Java-based software that is dedicated to support simple user tests/documentation of level 1
 (www.medunivwien.ac.at/zbmpmt/?id=98#323); accessed 26.6.2012

- **Nottingham USQC**
 (Nottingham University Hospitals, Medical Physics & Clinical Engineering, UK)
 software developed by the ultrasound group to evaluate level 2/3 tests

4. Personnel qualification

Technical evaluation of modern equipment requires actual knowledge of regulations, methods and test equipment as well as first of all practical experience.

This concept contains 4 levels of TQA checks (level 1 – 4) calling for various skills of personnel involved or engaged to perform the procedures efficiently and reproducibly:

- level 1 tests are aimed at clinical users with basic training,
- level 2 tests are aimed at personnel with some technical training,
- level 3 tests are aimed at personnel with technical training,
- level 4 tests are aimed at personnel or specialist laboratory facilities with special training.

The knowledge and personal skills can be acquired by completing suitable training courses dedicated to the level needed. Level 1–2 procedures are aimed at clinical personnel with basic skills and qualification of TQA, while levels 3 and 4 procedures are aimed at technical personnel who have completed suitable training courses.

A possible scheme to guarantee the quality of personal training and qualification level is suggested below.

initial (appropriate to their practice and needs):

- TQA-courses (theory & practice for level 1 – 4)
- proof of TQA-knowledge (TQA certificate for passed level) (e. g. clinical personnel level 1, technicians, physicists level 1 – 4)

continuing education (appropriate to their practice and needs):

- periodical participation (every 3 yrs.) at TQA-courses (e. g. during EFSUMB congresses)
- continuous training of test procedures
- proof of performed and documented TQA tests at home institution

A special TQA-certificate will be available for participants passing the different courses documenting the special knowledge and capability or for renewal purposes (Fig. 1).

The demands for adequate training and certification of personnel involved in ultrasound diagnosis are not part of this guideline.

Annex 1 & 2:

- Online unter http://dx.doi.org/10.1055/s-0032-1325347

Affiliations

1 Center for Medical Physics & Biomedical Engineering, Medical University Vienna, Austria
2 Clinical Physics Laboratory, UMC St Radboud Nijmegen, The Netherlands
3 Medical Physics, United Lincolnshire Hospitals NHS Trust, U.K.
4 Gruppenpraxis für Radiologie, Vienna, Austria
5 Department of Medical Physics, University Hospitals of Leicester, U.K.
6 Department of Cardiovascular Sciences, University of Leicester, U.K.

References