Horm Metab Res 2012; 44(12): 867-878
DOI: 10.1055/s-0032-1321851
Review
© Georg Thieme Verlag KG Stuttgart · New York

11Beta-Hydroxylase Deficiency and Other Syndromes of Mineralocorticoid Excess as a Rare Cause of Endocrine Hypertension

E. Melcescu
1   Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
,
J. Phillips
1   Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
,
G. Moll
2   Division of Pediatric Endocrinology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
,
J. Subauste
1   Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
3   GV (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
,
C. A. Koch
1   Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
3   GV (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
› Author Affiliations
Further Information

Publication History

received 04 May 2012

accepted 25 June 2012

Publication Date:
29 August 2012 (online)

Abstract

Hypertension represents a major public and global health problem, most of which likely can be improved by lifestyle changes including changing dietary habits with less consumption of processed and preserved foods, which generally contain higher amounts of salt than freshly prepared food items. Among causes for endocrine hypertension are syndromes of mineralocorticoid excess. This group of mostly monogenic and acquired disorders typically causes hypertension through activation of the mineralocorticoid receptor either directly or indirectly via hormonal mediators and from overactive amiloride-sensitive epithelial sodium channels located in the distal tubule and collecting ducts of the kidneys. Apart from primary aldosteronism, mineralocorticoid excess can be caused by congenital adrenal hyperplasia (CAH) due to mutations of the 11beta-hydroxylase and 17alpha-hydroxylase genes, by inactivating mutations of the glucocorticoid receptor gene (Chrousos syndrome), endogenous hypercortisolism (Cushing’s syndrome), by mutations of the 11beta-hydroxysteroid dehydrogenase type 2 gene (apparent mineralocorticoid excess/AME) or licorice/carbenoxolone intake, mutations of the epithelial sodium channel genes (Liddle syndrome), mutations of the mineralocorticoid receptor gene (Geller syndrome), and by mutations in the WNK1, WNK4, KLHL3, CUL3 genes (pseudohypoaldosteronism type 2 or Gordon syndrome). Most of these conditions are treated by restricting dietary salt intake. However, some require special therapies including dexamethasone/hydrocortisone (CAH), spironolactone/eplerenone (AME), epithelial sodium channel inhibitors amiloride/triamterene (Liddle and Gordon syndrome), while in others spironolactone and MR antagonists may be contraindicated due to an abnormally structured MR (Geller syndrome). We here review the pathophysiology, diagnosis, and therapy of these rare conditions including the presentation of a patient with 11beta-hydroxylase deficiency.

 
  • References

  • 1 Garthy H, Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev 1997; 77: 359-396
  • 2 Muhammad E, Leventhal N, Parvari G, Hanukoglu A, Hanukoglu I, Chalifa-Caspi V, Feinstein Y, Weinbrand J, Jacoby H, Manor E, Nagar T, Beck JC, Sheffield VC, Hershkovitz E, Parvari R. Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of carbonic anhydrase 12. Hum Genet 2011; 129: 397-340
  • 3 Daniel L, Meret L, Geneviève E, Felix JF, Brigitte MF. High salt intake down-regulates colonic mineralocorticoid receptors, epithelial sodium channels and 11β-hydroxysteroid dehydrogenase type 2. PLoS One 2012; 7: e37898
  • 4 Melcescu E, Koch CA. Syndromes of mineralocorticoid excess. In Koch CA, Chrousos GP. (eds.). Contemporary Endocrinology: Endocrine Hypertension. New York: Springer; 2012. in press
  • 5 Van Renterghem C, Lazdunski M. A new non-voltage-dependent, epithelial-like Na+ channel in vascular smooth muscle cells. Pflugers Arch 1991; 419: 401-408
  • 6 Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of the human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268-275
  • 7 Uwaifo GI. Obesity-associated hypertension. In Koch CA, Chrousos GP. (eds.). Contemporary Endocrinology: Endocrine Hypertension. Springer; New York: 2012. in press
  • 8 Briet M, Schiffrin EL. The role of aldosterone in the metabolic syndrome. Curr Hypertens Rep 2011; 13: 163-172
  • 9 Kotchen TA. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am J Hypertens 2010; 23: 1170-1178
  • 10 Krug AW, Ehrhart-Bornstein M. Aldosterone and metabolic syndrome: is increased aldosterone in metabolic syndrome patients an additional risk factor?. Hypertension 2008; 51: 1252-1258
  • 11 Sowers JR, Whaley-Connell A, Epstein M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med 2009; 150: 776-783
  • 12 Tirosh A, Garg R, Adler GK. Mineralocorticoid receptor antagonists and the metabolic syndrome. Curr Hypertens Rep 2010; 12: 252-257
  • 13 Quack I, Vonend O, Rump LC. Familial Hyperaldosteronism I – III. Horm Metab Res 2010; 42: 424-428
  • 14 Charmandari E, Sertedaki A, Kino T, Merakou C, Hoffman DA, Hatch MM, Hurt DE, Lin L, Xekouki P, Stratakis CA, Chrousos GP. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J Clin Endocrinol Metab 2012; May 24 [Epub ahead of print]
  • 15 Catena C, Colussi G, Nadalini E, Chiuch A, Baroselli S, Lapenna R, Sechi LA. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch Intern Med 2008; 168: 80-85
  • 16 Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005; 45: 1243-1248
  • 17 Rossi PG, Bernini G, Desideri G, Fabris B, Ferri C, Giacchetti G, Letizia C, Maccario M, Mannelli M, Matterello MJ, Montemurro D, Palumbo G, Rizzoni D, Rossi E, Pessina AC, Mantero F. PAPY Study Participants . Renal damage in primary aldosteronism: results of the PAPY Study. Hypertension 2006; 48: 232-238
  • 18 Sechi LA, Colussi G, Di Fabio A, Catena C. Cardiovascular and renal damage in primary aldosteronism: outcomes after treatment. Am J Hypertens 2010; 23: 1253-1260
  • 19 Sechi LA, Novello M, Lapenna R, Baroselli S, Nadalini E, Colussi GL, Catena C. Long-term renal outcomes in patients with primary aldosteronism. JAMA 2006; 295: 2638-2645
  • 20 Shibata S, Fujita T. Mineralocorticoid receptors in the pathophysiology of chronic kidney diseases and the metabolic syndrome. Mol Cell Endocrinol 2012; 350: 273-278
  • 21 Funder JW. GPR30, mineralocorticoid receptors, and the rapid vascular effects of aldosterone. Hypertension 2011; 57: 370-372
  • 22 Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension 2011; 57: 442-451
  • 23 Krug AW, Pojoga LH, Williams GH, Adler GK. Cell membrane-associated mineralocorticoid receptors? New evidence. Hypertension 2011; 57: 1019-1025
  • 24 Odermatt A, Kratschmar DV. Tissue-specific modulation of mineralocorticoid receptor function by 11β-hydroxysteroid dehydrogenases: An overview. Mol Cell Endocrinol 2012; 350: 168-186
  • 25 Kolkhof P, Borden SA. Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics. Mol Cell Endocrinol 2012; 350: 310-317
  • 26 Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens 2012; 5: 514-523
  • 27 Oyamada N, Sone M, Miyashita K, Park K, Taura D, Inuzuka M, Sonoyama T, Tsujimoto H, Fukunaga Y, Tamura N, Itoh H, Nakao K. The role of mineralocorticoid receptor expression in brain remodeling after cerebral ischemia. Endocrinology 2008; 149: 3764-3777
  • 28 Guo C, Martinez-Vasquez D, Mendez GP, Toniolo MF, Yao TM, Oestreicher EM, Kikuchi T, Lapointe N, Pojoga L, Williams GH, Ricchiuti V, Adler GK. Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology 2006; 147: 5363-5373
  • 29 Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 2011; 80: 825-858
  • 30 Kino T, Jaffe H, Amin ND, Chakrabarti M, Zheng YL, Chrousos GP, Pant HC. Cyclin-dependent kinase 5 modulates the transcriptional activity of the mineralocorticoid receptor and regulates expression of brain-derived neurotrophic factor. Mol Endocrinol 2010; 24: 941-952
  • 31 Yokota K, Shibata H, Kobayashi S, Suda N, Murai A, Kurihara I, Saito I, Saruta T. Proteasome-mediated mineralocorticoid receptor degradation attenuates transcriptional response to aldosterone. Endocr Res 2004; 30: 611-616
  • 32 Viengchareun S, Kamenicky P, Teixeira M, Butlen D, Meduri G, Blanchard-Gutton N, Kurschat C, Lanel A, Martinerie L, Sztal-Mazer S. Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line. Mol Endocrinol 2009; 23: 1948-1962
  • 33 Grossmann C, Gekle M. Non-classical actions of the mineralocorticoid receptor: misuse of EGF receptors?. Mol Cell Endocrinol 2007; 277: 6-12
  • 34 Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007; 55: 498-510
  • 35 Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y, Fujita T. Modification of mineralocorticoid receptor function by Rac1GTPase: implication in proteinuric kidney disease. Nat Med 2008; 14: 1370-1376
  • 36 Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 2000; 289: 119-123
  • 37 Wehling M, Spes CH, Win N, Anson CP, Schmidt BMW, Theisen SK, Christ M. Rapid cardiovascular action of aldosterone in men. J Clin Endocrinol Metab 1998; 83: 3517-3522
  • 38 Brown NJ, Agirbasli MA, Williams GH, Litchfield WR, Vaughan DE. Effect of activation and inhibition of the renin-angiotensin system on plasma PAI-1. Hypertension 1998; 32: 965-971
  • 39 Brown NJ, Vaughan DE, Fogo AB. The renin-angiotensin-aldosterone system and fibrinolysis in progressive renal disease. Semin Nephrol 2002; 22: 399-406
  • 40 Matthew KA, Manish PP, Thomas HH. Renal and electrolyte disorders: Disorders of the renin-angiotensin-aldosterone system. 2010; 8: 251-271
  • 41 Koch CA. Adrenal cortex, physiology. In: Martini L. (ed). Encyclopedia of Endocrinology and Endocrine Diseases. San Diego: Academic Press; 2004
  • 42 Hassan-Smith Z, Stewart PM. Inherited forms of mineralocorticoid hypertension. Curr Opin Endocrinol Diabetes Obes 2011; 18: 177-185
  • 43 Young Jr WF. Endocrine hypertension: then and now. Endocr Pract 2010; 16: 888-902
  • 44 Kratzsch J, Wende D, Thiery J, Koch CA. Basal aldosterone-renin-ratio and aldosterone levels in healthy adults during the saline load test. Clin Chem Lab Med 2007; 45–49: A114-A115 (German Dissertation, Diana Wende, 2008, Leipzig)
  • 45 Mulatero P. A new form of hereditary primary aldosteronism: familial hyperaldosteronism type III. J Clin Endocrinol Metab 2008; 93: 2972-2974
  • 46 Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, Young Jr WF, Montori VM. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2008; 93: 3266-3281
  • 47 Cho MJ, Sung EY, Park JA, Lee HD. Congestive heart failure as an initial manifestation of reninoma. J Pediatr Endocrinol Metab 2011; 24: 1085-1087
  • 48 Wong L, Hsu TH, Perlroth MG, Hofmann LV, Haynes CM, Katznelson L. Reninoma: case report and literature review. J Hypertens 2008; 26: 368-373
  • 49 Shera AH, Baba AA, Bakshi IH, Lone IA. Recurrent malignant juxtaglomerular cell tumor: A rare cause of malignant hypertension in a child. J Indian Assoc Pediatr Surg 2011; 16: 152-154
  • 50 Gottardo F, Cesari M, Morra A, Gardiman M, Fassina A, Dal Bianco M. A kidney tumor in an adolescent with severe hypertension and hypokalemia: an uncommon case – case report and review of the literature on reninoma. Urol Int 2010; 85: 121-124
  • 51 Kondo K, Saruta T, Saito I, Yoshida R, Maruyama H, Matsuki S. Benign deoxycorticosterone-producing adrenal tumor. JAMA 1976; 236: 1042-1044
  • 52 Sone M, Shibata H, Homma K, Tamura N, Akahira J, Hamada S, Yahata M, Fukui N, Itoh H, Sasano H, Nakao K. Close examination of steroidogenesis disorders in a DOC- and progesterone-producing adrenocortical carcinoma. Endocrine 2009; 35: 25-33
  • 53 Kelly WF, O’Hare MJ, Loizou S, Davies D, Laing I. Hypermineralocorticism without excessive aldosterone secretion: an adrenal carcinoma producing deoxycorticosterone. Clin Endocrinol (Oxf) 1982; 17: 353-361
  • 54 Müssig K, Wehrmann M, Horger M, Maser-Gluth C, Häring HU, Overkamp D. Adrenocortical carcinoma producing 11-deoxycorticosterone: a rare cause of mineralocorticoid hypertension. J Endocrinol Invest 2005; 28: 61-65
  • 55 New MI, Geller DS, Fallo F, Wilson RC. Monogenic low renin hypertension. Trends Endocrinol Metab 2005; 16: 92-97
  • 56 Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med 2003; 349: 776-788
  • 57 Zachmann M, Tassinari D, Prader A. Clinical and biochemical variabilitiy of congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. J Endocrinol Metab 1983; 56: 222-229
  • 58 Ogawa K, Hara A, Tanabe S, Tamori S, Yoshida H, Pak CH, Matsunaga M, Kawai C, Dodo H, Tanimura H. A case of 17-alpha-hydroxylase deficiency syndrome associated with right adrenal tumor. Clin Exp Hypertens A 1984; 6: 863-877
  • 59 Costa-Santos M, Kater CE, Auchus RJ. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab 2004; 89: 49-60
  • 60 Wong SL, Shu SG, Tsai CR. Seventeen alpha-hydroxylase deficiency. J Formos Med Assoc 2006; 105: 177-181
  • 61 Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Åkerström G, Wang W, Carling T, Lifton RP. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331: 768-772
  • 62 Krapivinsky G, Kennedy ME, Nemec J, Medina I, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature 1995; 374: 135-141
  • 63 Scholl UI, Nelson-Williams C, Yue P, Grekin R, Wyatt RJ, Dillon MJ, Couch R, Hammer LK, Harley FL, Farhi A, Wang WH, Lifton RP. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc Natl Acad Sci USA 2012; 7: 2533-2538
  • 64 Ferrari P. The role of 11β-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta 2010; 1802: 1178-1187
  • 65 New MI, Levine LS, Biglieri EG, Paeira J, Ulick S. Evidence for an unidentified ACTH-induced steroid hormone causing hypertension. J Clin Endocrinol Metab 1977; 44: 924-933
  • 66 Lin-Su K, Zhou P, Arora N, Betensky BP, New MI, Wilson RC. In vitro expression studies of a novel mutation delta299 in a patient affected with apparent mineralocorticoid excess. J Clin Endocrinol Metab 2004; 89: 2024-2027
  • 67 Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor mediated. Science 1988; 242: 583-585
  • 68 Liddle GW, Bledsoe T, Coppage Jr WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 1963; 76: 199-213
  • 69 Wilson FH, Disse-Nicodeme S, Choate KA. Human hypertension caused by mutations in WNK kinases. Science 2001; 293: 11-14
  • 70 Gordon RD, Geddes RA, Pawsey CGK, Halorau MW. Hypertension and severe hyperkalemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med 1970; 19: 287-294
  • 71 Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Välimäki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 2012; 482: 98-103
  • 72 Glover M, Zuber AM, O’Shaughnessy KM. Hypertension, dietary salt intake, and the role of the thiazide-sensitive sodium chloride transporter NCCT. Cardiovas Ther 2011; 68-76
  • 73 Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, Gutkin M, Vialettes B, Christofilis MA, Kauppinen-Makelin R, Mayan H, Risch N, Lifton RP. Multilocus linkage of familial hyperkalemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p-q21. Nat Genet 1997; 16: 202-205
  • 74 Kahle KT, Wilson FH, Leng Q, Lalioti MD, O’Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K secretion. Nat Genet 2003; 35: 372-376
  • 75 Klemm SA, Gordon RD, Tunny TJ, Thompson RE. The syndrome of hypertension and hyperkalemia with normal GFR (Gordon’s syndrome): is there increased proximal sodium reabsorption?. Clin Invest Med 1991; 14: 551-558
  • 76 Chrousos GP, Vingerhoeds A, Brandon D, Pugeat M, Eil C, Loriaux DL, Lipsett MB. Primary cortisol resistance. J Clin Invest 1982; 69: 1261-1269
  • 77 Charmandari E, Kino T, Ichijo T, Chrousos GP. Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab 2008; 93: 1563-1572
  • 78 Charmandari E, Kino T. Chrousos syndrome: a seminal report, a phylogenetic enigma and the clinical implications of glucocorticoid signalling changes. Eur J Clin Invest 2010; 40: 932-942
  • 79 Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Singler BP, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 2000; 289: 119-123
  • 80 Ferrari P, Bianchetti MG. Diagnostic investigations in inherited endocrine disorders of sodium regulations. In: Ranke MB, Mullis PE. (eds.). Diagnostics of endocrine function in children and adolescents. 4th edition Basel: Karger; 2011: 220-217 (Fig. 2, Table 2)
  • 81 http://home.comcast.net/~llpellegrini/urinarysystem.htm
  • 82 Shackleton CH. Profiling steroid hormones and urinary steroids. J Chromatogr 1986; 379: 91-156
  • 83 Melcescu E, Koch CA. (Modified). Testing for Endocrine Hypertension. Chapter 7 in Koch CA (Section editor: Endocrine Testing Protocols) in endotext.org Editor: Leslie DeGroot, 2012
  • 84 Merke DP, Bornstein SR. Congenital adrenal hyperplasia. Lancet 2005; 365: 2125-2136
  • 85 Choi JH, Jin HY, Ko JM, Lee JJ, Kim GH, Jung CW, Lee J, Yoo HW. Clinical phenotype and mutation spectrum of the CYP21A2 gene in patients with steroid 21-hydroxylase deficiency. Exp Clin Endocrinol Diabetes 2012; 120: 23-27
  • 86 White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rösler A. A mutation in CYP11B1 (Arg-448----His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest 1991; 87: 1664-1667
  • 87 Paperna T, Gershoni-Baruch R, Badarneh K, Kasinetz L, Hochberg Z. Mutations in CYP11B1 and congenital adrenal hyperplasia in Moroccan Jews. J Clin Endocrinol Metab 2005; 90: 5463-5465
  • 88 Parsa AA, New MI. Low-renin hypertension of childhood. Endocrinol Metab Clin North Am 2011; 40: 369-377
  • 89 Ben Charfeddine I, Riepe FG, Kahloul N, Kulle AE, Adala L, Mamaï O, Amara A, Mili A, Amri F, Saad A, Holterhus PM, Gribaa M. Two novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11β hydroxylase deficiency in a Tunisian family. Gen Comp Endocrinol 2012; 175: 514-518
  • 90 Phillips J, Melcescu E, Moll GW, Subauste JS, Chaithongdi N, Koch CA. 11β-hydroxylase deficiency: a rare cause of endocrine hypertension in blacks. J Invest Med 2012; 60: 27852
  • 91 Grumbach MM, Hughes IA, Conte FA. Disorders of sex differentiation. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS. (eds.). Williams textbook of endocrinology. 10th ed. Philadelphia (PA): Saunders; 2003: 842-1002
  • 92 Yanase T, Simpson ER, Waterman MR. 17-Hydroxylase/17,20-lyase deficiency: from clinical investigation to molecular definition. Endocr Rev 1991; 12: 91-108
  • 93 Palermo M, Quinkler M, Stewart PM. Apparent mineralocorticoid excess syndrome: an overview. Arq Bras Endocrinol Metabol 2004; 48: 687-696
  • 94 Dave-Sharma S, Robert CW, Harbison MD, Newfield R, Azar MR, Krozowski ZS, Funder JW, Shackleton CHL, Bradlow HL, Wei JQ, Hertecant J, Moran A, Neiberger RE, Balfe JW, Fattah A, Daneman D, Akkurt HI, De Santis C, New MI. Examination of genotype and phenotype relationships in 14 patients with apparent mineralocorticoid excess. J Clin Endocrinol Metab 1998; 83: 2244
  • 95 Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez LC, Rauh W, Rösler A, Bradlow HL, New MI. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab 1979; 49: 757-764
  • 96 Stewart PM, Corrie JE, Shackleton CH, Edwards CR. Syndrome of apparent mineralocorticoid excess: a defect in the cortisol-cortisone shuttle. J Clin Invest 1988; 82: 340-349
  • 97 Knops NB, Monnens LA, Lenders JW, Levtchenko EN. Apparent mineralocorticoid excess: time of manifestation and complications despite treatment. Pediatrics 2011; 127: e1610-e1614
  • 98 Bailey MA, Paterson JM, Hadoke PW, Wrobel N, Bellamy CO, Brownstein DG, Seckl JR, Mullins JJ. A switch in the mechanism of hypertension in the syndrome of apparent mineralocorticoid excess. J Am Soc Nephrol 2008; 19: 47-58
  • 99 Hamidon BB, Jeyabalan V. Exogenously-induced apparent hypermineralocorticoidism associated with ingestion of “asam boi”. Singapore Med J 2006; 47: 156-158
  • 100 Bockenhauer D, van’t Hoff W, Dattani M, Lehnhardt A, Subtirelu M, Hildebrandt F, Bichet DG. Secondary nephrogenic diabetes insipidus as a complication of inherited renal diseases. Nephron Physiol 2010; 116: 23
  • 101 Morineau G, Sulmont V, Salomon R, Fiquet-Kempf B, Jeunemaitre X, Nicod J, Ferrari P. Apparent mineralocorticoid excess:report of six new cases and extensive personal experience. J Am Soc Nephrol 2006; 17: 3176-3184
  • 102 Palermo M, Cossu M, Shackleton CH. Cure of apparent mineralocorticoid excess by kidney transplantation. N Engl J Med 1998; 339: 1787
  • 103 Epstein MT, Espiner EA, Donald RA, Hughes H. Liquorice toxicity and the renin–angiotensin–aldosterone axis in man. Br Med J 1977; 1: 209-210
  • 105 Stormer FC, Reistad R, Alexander J. Glycyrrhizic acid in liquorice – evaluation of health hazard. Food Chem Toxicol 1993; 31: 303-312
  • 104 Nishiyama N, Takeshita M, Tanaka K, Miyao M, Mizuno Y. A case of severe hypokalemia caused by a Chinese herbal remedy (Yokukansan) in an 81-year-old woman with dementia. Nihon Ronen Igakkai Zasshi 2011; 48: 553-557
  • 106 Ploeger B, Mensinga T, Sips A, Deerenberg C, Meulenbelt J, DeJongh J. A population physiologically based pharmacokinetic/pharmacodynamic model for the inhibition of 11-beta-hydroxysteroid dehydrogenase activity by glycyrrhetic acid. Toxicol Appl Pharmacol 2001; 170: 46-55
  • 107 Armanini D, Mattarello MJ, Fiore C, Bonanni G, Scaroni C, Sartorato P, Palermo M. Licorice reduces serum testosterone in healthy women. Steroids 2004; 69: 763-766
  • 108 Mattarello MJ, Benedini S, Fiore C, Camozzi V, Sartorato P, Luisetto G, Armanini D. Effect of licorice on PTH levels in healthy women. Steroids 2006; 71: 403-408
  • 109 Farese Jr RV, Biglieri EG, Shackleton CH, Irony I, Gomez Fontes R. Licorice-induced hypermineralocorticoidism. N Engl J Med 1991; 325: 1223-1227
  • 110 Kageyama Y, Suzuki H, Saruta T. Role of glucocorticoid in the development of glycyrrhizin-induced hypertension. Clin Exp Hypertens 1994; 16: 761-778
  • 111 Stewart PM, Wallace AM, Atherden SM, Shearing CH, Edwards CR. Mineralocorticoid activity of carbenoxolone: contrasting effects of carbenoxolone and liquorice on 11 beta-hydroxysteroid dehydrogenase activity in man. Clin Sci 1990; 78: 49-54
  • 112 Nicholls MG, Ramsay LE, Boddy K, Fraser R, Morton JJ, Robertson JI. Mineralocorticoid-induced blood pressure, electrolyte, and hormone changes, and reversal with spironolactone, in healthy men. Metabolism 1979; 28: 584-593
  • 113 Kageyama Y, Suzuki H, Saruta T. Glycyrrhizin induces mineralocorticoid activity through alterations in cortisol metabolism in the human kidney. J Endocrinol 1992; 135: 147-152
  • 114 Qadri YJ, Rooj AK, Fuller CM. ENaCs and ASICs as Therapeutic Targets. Am J Physiol Cell Physiol 2012; 302: C943-C965
  • 115 Rossi E, Farnetti E, Nicoli D, Sazzini M, Perazzoli F, Regolisti G, Grasselli C, Santi R, Negro A, Mazzeo V, Mantero F, Luiselli D, Casali B. A clinical phenotype mimicking essential hypertension in a newly discovered family with Liddle’s syndrome. Am J Hypertens 2011; 24: 930-935
  • 116 Firsov D, Schild L, Gautschi I, Merillat A-M, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci USA 1996; 93: 15370-15375
  • 117 Furuhashi M, Kitamura K, Adachi M, Miyoshi T, Wakida N, Ura N, Shikano Y, Shinshi Y, Sakamoto K, Hayashi M, Satoh N, Nishitani T, Tomita K, Shimamoto K. Liddle’s syndrome caused by a novel mutation in the proline-rich PY motif of the epithelial sodium channel β-subunit. J Clin Endocrinol Metab 2005; 90: 340-344
  • 118 Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP. Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 2005; 11: 76-82
  • 119 Inoue J, Iwaoka T, Tokunaga H, Takamune K, Naomi S, Araki M, Takahama K, Yamaguchi K, Tomita K. A family with Liddle’s syndrome caused by a new missense mutation in the ß subunit of the epithelial sodium channel. J Clin Endocrinol Metab 1998; 83: 2210-2213
  • 120 Bogdanović R, Kuburović V, Stajić N, Mughal SS, Hilger A, Ninić S, Prijić S, Ludwig M. Liddle syndrome in a Serbian family and literature review of underlying mutations. Eur J Pediatr 2012; 171: 471-478
  • 121 Warnock DG. Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int 1998; 53: 18-24
  • 122 Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate tiazide-sensitive NaCl cotransport. J Clin Invest 2003; 111: 1039-1045
  • 123 Mendes AI, Mascarenhas MR, Matos S, Sousa I, Ferreira J, Barbosa AP, Bicho M, Jordan P. A WNK4 gene variant relates to osteoporosis and not to hypertension in the Portuguese population. Mol Gen Metab 2011; 102: 465-469
  • 124 Yang SS, Hsu YJ, Chiga M, Rai T, Sasaki S, Uchida S, Lin SH. Mechanisms for hypercalciuria in pseudohypoaldosteronism type II-causing WNK4 knock-in mice. Endocrinology 2010; 151: 1829-1836
  • 125 Zhang C, Wang Z, Xie J, Yan F, Wang W, Feng X, Zhang W, Chen N. Identification of a novel WNK4 mutation in Chinese patients with pseudohypoaldosteronism type II. Nephron Physiol 2011; 118: 53-61
  • 126 Lingyun L, Xiuyan F, Hui C. Dietary salt modulates the sodium chloride cotransporter expression likely through an aldosterone-mediated WNK4-ERK1/2 signaling pathway. Pflugers Arch 2012; 463: 477-485
  • 127 Yang J, Fuller PJ. Interactions of the mineralocorticoid receptor – Within and without. Mol Cell Endocrinol 2012; 350: 196-205
  • 128 Mohanlal V, Parsa A, Weir MR. Role of dietary therapies in the prevention and treatment of hypertension. Nat Rev Nephrol 2012; May 15 epub ahead of print