Synlett 2013; 24(7): 873-877
DOI: 10.1055/s-0032-1318482
letter
© Georg Thieme Verlag Stuttgart · New York

Silver Ion Mediated In Situ Synthesis of Mixed Diaryl Sulfides from Diaryl Disulfides

Prasanta Gogoi
a   Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India   Fax: +91(3842)224797   Email: barmanpranjit@yahoo.co.in
,
Sandhya R. Gogoi
b   Department of Chemical Science, Tezpur University, Tezpur 784028, Assam, India
,
Mukul Kalita
a   Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India   Fax: +91(3842)224797   Email: barmanpranjit@yahoo.co.in
,
Pranjit Barman*
a   Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India   Fax: +91(3842)224797   Email: barmanpranjit@yahoo.co.in
› Author Affiliations
Further Information

Publication History

Received: 11 February 2013

Accepted after revision: 26 February 2013

Publication Date:
15 March 2013 (online)


Abstract

The AgNO3-mediated in situ scission of aromatic disulfides in the presence of electron-rich aromatic compounds results in the efficient synthesis of diaryl sulfides. Key features of this new methodology are high yields of aromatic and heteroaromatic sulfides, mild reaction conditions, simplicity, simple workup, and avoiding foul-smelling reactants like thiols.

 
  • References and Notes

    • 1a Forbes DC, Bettigeri SV, Al-Azzeh NN, Finnigan BP, Kundukulam JA. Tetrahedron Lett. 2009; 50: 1855
    • 1b Alcaraz M.-L, Atkinson S, Cornwall P, Foster AC, Gill DM, Humphries LA, Keegan PS, Kemp R, Merifield E, Nixon RA, Noble AJ, Obeirne D, Patel ZM, Perkins J, Rowan P, Sadler P, Singleton JT, Tornos J, Watts AJ, Woodland IA. Org. Process Res. Dev. 2005; 9: 555
    • 1c Liu G, Link JT, Pei Z, Reilly EB, Leitza S, Nguyen B, Marsh KC, Okasinski GF, von Geldern TW, Ormes M, Fowler K, Gallatin M. J. Med. Chem. 2000; 43: 4025
    • 2a Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, Dicioccio AT, Petrova T, Mischler A, Podjarny AD. J. Med. Chem. 2005; 48: 3141
    • 2b Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ, Kauffman LR, O’Brien JA, Sardana VV, Schleif WA, Theoharides AD, Anderson PS. J. Med. Chem. 1993; 36: 1291
    • 2c Silvestri R, De Martino G, La Regina G, Artico M, Massa S, Vargiu L, Mura M, Loi AG, Marceddu T, La Colla P. J. Med. Chem. 2003; 46: 2482
    • 2d Campbell JA, Broka CA, Gong L, Walker KA. M, Wang J.-H. Tetrahedron Lett. 2004; 45: 4073
  • 3 McKinnie BG, Ranken PF. U.S. Patent No. 4602113, (Hydrocarbylthio)phenols and their preparation, Jul 22, 1986.
  • 4 Feuerer A, Severin T. Tetrahedron Lett. 1993; 34: 2103
  • 5 Schlosser KM, Krasutsky AP, Hamilton HW, Reed JE, Sexton K. Org. Lett. 2004; 6: 819
  • 6 Maeda Y, Koyabu M, Nishimura T, Uemura S. J. Org. Chem. 2004; 69: 7688
    • 7a Alves D, Lara RG, Contreira ME, Radatz CS, Duarte LF. B, Perin G. Tetrahedron Lett. 2012; 53: 3364
    • 7b Kelly CB, Lee CX, Leadbeater NE. Tetrahedron Lett. 2011; 52: 4587
    • 7c Basu B, Mandal B, Das S, Kundu S. Tetrahedron Lett. 2009; 50: 5523
    • 7d Feng Y, Wang H, Sun F, Li Y, Fu X, Jin K. Tetrahedron 2009; 65: 9737
    • 7e Rout L, Sen TK, Punniyamurthy T. Angew. Chem. Int. Ed. 2007; 46: 5583
    • 7f Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
    • 7g Bates CG, Saejueng P, Doherty MQ, Venkataraman D. Org. Lett. 2004; 6: 5005
    • 7h Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 7i Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 7j Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 7k Ranken PF, McKinnie BG. J. Org. Chem. 1989; 54: 2985
    • 9a Taniguchi N. J. Org. Chem. 2004; 69: 6904
    • 9b Millois C, Diaz P. Org. Lett. 2000; 2: 1705
    • 9c Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
    • 9d Takagi G. Chem. Lett. 1986; 15: 1379
  • 10 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
    • 11a Lee J.-Y, Lee PH. J. Org. Chem. 2008; 73: 7413
    • 11b Fernandez-Rodrýguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 11c Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
    • 11d Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205
    • 11e Arnould JC, Didelot M, Cadilhac C, Pasquet MJ. Tetrahedron Lett. 1996; 37: 4523
    • 11f Ishiyama T, Mori M, Suzuki A, Miyaura N. J. Organomet. Chem. 1996; 525: 225
    • 11g Ciattini PG, Morera E, Ortar G. Tetrahedron Lett. 1995; 36: 4133
    • 12a Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
    • 12b Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697
  • 13 Ge W, Wei Y. Green Chem. 2012; 14: 2066
    • 14a Borisov AV, Matshulevich ZV, Osmanov VK, Borisova GN, Mammadova GZ, Maharramov AM, Khrustalev VN. Chem. Heterocycl. Compd. 2012; 48: 1098
    • 14b Karasch N, Langford RB. J. Org. Chem. 1963; 28: 1903
    • 15a Eccles KS, Elcoate CJ, Lawrence SE, Maguire AR. ARKIVOC 2010; (ix): 216
    • 15b Barman P, Bhattacharjee T, Sarma R. Acta Crystallogr., Sect. E 2010; 66: 1943
  • 16 Song M, Fan C. Acta Crystallogr., Sect. E 2009; 65: 2835
    • 17a Typical Procedure: AgNO3 (0.17 g, 1 mmol), and disulfide 1b (0.30 g, 1 mmol), were added to EtOH (1.0 mL) and DMF (1.0 mL) and stirred at r.t. for 5 min. After that, β-naphthol 2f (0.14 g, 1 mmol) was added. Then the contents were refluxed with stirring for 10 h at 110 °C. The precipitated silver mercaptide was filtered and the solvent removed at reduced pressure. The residue obtained was extracted with CH2Cl2 and dried over anhyd Na2SO4. Removal of the CH2Cl2 under reduced pressure gave sulfide 3f which was purified by column chromatography (EtOAc–hexane, 1:9).
    • 17b Synthesis of Aryl Benzyl Thioethers 4: Silver mercaptide (0.26 g, 1 mmol) and benzyl chloride (0.15 g, 1.2 mmol) in EtOH (5 mL) were refluxed for 6 h. Then NaOH (0.2 g, 5 mmol) was added and reflux continued for an additional 2 h. Upon cooling, NaOH (2 M, 30 mL) was added to the reaction mixture followed by extraction with CH2Cl2. The organic phase was washed with NaOH (2 M, 2 × 25 mL), H2O (25 mL) and brine (25 mL), dried over anhyd Na2SO4, filtered and the solvent removed under reduced pressure to give the aryl benzyl thioether. Representative Analytical Data; 1-(2-Nitrophenylthio)napthalen-2-ol (3f): The title compound was prepared according to the typical procedure in 75% yield (0.223 g) as a yellow solid (mp 170–171 °C). IR (KBr): 3435, 2905, 2845, 1588, 1545, 1497, 1335, 1055, 940, 865, 746, 689 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 7.9 Hz, 1 H), 8.16 (d, J = 8.6 Hz, 1 H), 7.86–7.97 (m, 6 H), 7.23 (s, 1 H), 6.84 (d, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 161.2, 156.3, 155.3, 153.1, 148.6, 143.5, 138.4, 136.7, 130.2, 129.1, 128.5, 127.2, 118.6, 117.4, 115.0. HRMS (ESI): m/z [M + H+] calcd for C16H11NO3S: 298.0460; found: 298.0463. Anal. Calcd for C16H11NO3S: C, 64.63; H, 3.73; N, 4.71. Found: C, 64.58; H, 3.91; N, 4.88.
  • 18 Harris JF. Jr. J. Org. Chem. 1981; 46: 268
  • 19 Davis FA, Slegeir WA. R, Evans S, Schwartz A, Goff DL, Palmer R. J. Org. Chem. 1977; 42: 967

    • For reviews, see:
    • 20a Davis FA. J. Org. Chem. 2006; 71: 8993
    • 20b Davis FA, Nadir UK. Org. Prep. Proced. Int. 1979; 11: 33
  • 21 Davis FA, Johnston RP. II. J. Org. Chem. 1972; 37: 859
  • 22 Arguello JE, Schmidt LC, Penenory AB. Org. Lett. 2003; 5: 4133