Synlett 2013; 24(5): 645-651
DOI: 10.1055/s-0032-1318331
letter
© Georg Thieme Verlag Stuttgart · New York

A Simple and Efficient Microwave-Assisted Synthesis of Substituted Isoindolinone Derivatives via Ligand-Free Pd-Catalyzed Domino C–C/C–N Coupling Reaction

Vikas Tyagi
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226 001, India   Fax: +91(522)2623405   Email: premsc58@hotmail.com   Email: prem_chauhan_2000@yahoo.com
,
Shahnawaz Khan
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226 001, India   Fax: +91(522)2623405   Email: premsc58@hotmail.com   Email: prem_chauhan_2000@yahoo.com
,
Prem M. S. Chauhan*
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226 001, India   Fax: +91(522)2623405   Email: premsc58@hotmail.com   Email: prem_chauhan_2000@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 03 January 2013

Accepted after revision: 12 February 2013

Publication Date:
25 February 2013 (online)


Abstract

We have reported a microwave-assisted, ligand-free Pd-catalyzed domino C–C/C–N coupling reaction to construct diverse isoindolinone derivatives using amides and isocyanides as coupling partners. This strategy provides isoindolinone derivatives in moderate to good yield and high stereoselectivity. A broad range of amides has been tolerated and there is no need for extra-dry conditions in this reaction protocol, which offered highly diverse products and easy handling of the reaction.

Supporting Information

 
  • References and Notes

    • 1a Wang Y.-F, Toh KK, Lee J.-Y, Chiba S. Angew. Chem. Int. Ed. 2011; 50: 5927
    • 1b Tsukano C, Okuno M, Takemoto Y. Angew. Chem. Int. Ed. 2012; 51: 1
    • 1c Fusano A, Fukuyama T, Nishitani S, Inouye T, Ryu I. Org. Lett. 2010; 12: 2410
    • 1d Guimond N, Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
    • 1e Okamoto N, Sakurai K, Ishikura M, Takeda K, Yanada R. Tetrahedron Lett. 2009; 50: 4167
    • 1f Nandi S, Samanta S, Jana S, Ray JK. Tetrahedron Lett. 2010; 51: 5294
    • 1g Ouyang HC, Tang R.-Y, Zhong P, Zhang X.-G, Li J.-H. J. Org. Chem. 2011; 76: 223
    • 1h Leibeling M, Pawliczek M, Kratzert D, Stalke D, Werz D.-B. Org. Lett. 2012; 14: 346
    • 2a Ma B, Wang Y, Peng J, Zhu Q. J. Org. Chem. 2011; 76: 6362
    • 2b Skoda-Foldes R, Kollar L. Curr. Org. Chem. 2002; 6: 1097
    • 2c Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
    • 2d Houlden CE, Hutchby M, Bailey CD, Ford JG, Tyler SN. G, Gagné MR, Lloyd-Jones GC, Booker-Milburn K.-I. Angew. Chem. Int. Ed. 2009; 48: 1830
    • 2e Giri R, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14082
    • 2f Yoo E.-J, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 17378
    • 2g Fusano A, Fukuyama T, Nishitani S, Inouye T, Ryu I. Org. Lett. 2010; 12: 2410
    • 2h Kadnikov DV, Larock RC. J. Org. Chem. 2004; 69: 6772
    • 2i Gimeno A, Medio-Simón M, Ramírez de Arellano C, Asensio G, Cuenca AB. Org. Lett. 2010; 12: 1900
    • 2j Saito T, Ogawa S, Takei N, Kutsumura N, Otani T. Org. Lett. 2011; 13: 1098
    • 2k Yang G, Zhang W. Org. Lett. 2012; 14: 268
    • 3a Zhang S, Zhang W.-X, Xi Z. Chem. Eur. J. 2010; 16: 8419
    • 3b Wang Y, Zhu Q. Adv. Synth. Catal. 2012; 354: 1902
    • 3c Van Baelen G, Kuijer S, Rýček L, Sergeyev S, Janssen E, De Kanter FJ. J, Maes BU. W, Ruijter E, Orru RV. A. Chem. Eur. J. 2011; 17: 15039
    • 3d Vlaar T, Ruijter E, Znabet A, Janssen E, De Kanter FJ. J, Maes BU. W, Orru RV. A. Org. Lett. 2011; 13: 6496
    • 3e Soeta T, Tamura K, Ukaji Y. Org. Lett. 2012; 14: 1226
    • 3f Liu B, Li Y, Jiang H, Yin M, Huang H. Adv. Synth. Catal. 2012; 354: 2288
    • 3g MacMillan SN, Tanskia JM, Waterman R. Chem. Commun. 2007; 4172
    • 3h Qiu G, He Y, Wu J. Chem. Commun. 2012; 48: 3836
    • 3i Masdeu C, Gómez E, Williams NA. O, Lavilla R. Angew. Chem. Int. Ed. 2007; 46: 3043
  • 4 Fei X.-D, Ge Z.-Y, Tang T, Zhu Y.-M, Ji S.-J. J. Org. Chem. 2012; 77: 10321
  • 5 Tyagi V, Khan S, Giri A, Gauniyal HM, Sridhar B, Chauhan PM. S. Org. Lett. 2012; 14: 3126
    • 6a Marushiiri A. JP 59046268, 1984 ; Chem. Abstr. 1984, 101, 54922
    • 6b Hulin B, Parker JC, Piotrowski DW. US 2005234065, 2005
    • 6c Chen M, He M, Zhou X, Huang L, Ruan Y, Huang P. Tetrahedron 2005; 61: 1335
    • 6d Stuk TL, Assink BK, Bates RC, Erdman DT, Fedij V, Jennings SM, Lassig JA, Smith RJ, Smith TL. Org. Process Res. Dev. 2003; 7: 851
    • 6e Belliotti TR, Brink WA, Kesten SR, Rubin JR, Wustrow DJ, Zoski KT, Whetzel SZ, Corbin AE, Pugsley TA, Heffner TG, Wise LD. Bioorg. Med. Chem. Lett. 1998; 8: 1499
    • 7a Comins DL, Schilling S, Zhang Y. Org. Lett. 2005; 7: 95
    • 7b Riedinger C, Endicott JA, Kemp SJ, Smyth LA, Watson A, Valeur E, Golding BT, Griffin RJ, Hardcastle IR, Noble ME, McDonnell JM. J. Am. Chem. Soc. 2008; 130: 16038
    • 7c Link JT, Raghavan S, Danishefsky SJ. J. Am. Chem. Soc. 1995; 117: 552
    • 7d Luzzio FA, Mayorov AV, Ng SS. W, Kruger EA, Figg WD. J. Med. Chem. 2003; 46: 3793
    • 7e Jiaang WT, Chen YS, Hsu T, Wu TH, Chien CH, Chang CN, Chang SP, Lee SJ, Chen X. Bioorg. Med. Chem. Lett. 2005; 15: 687
    • 7f Ferland J.-M, Demerson CA, Humber LG. Can. J. Chem. 1985; 63: 361
    • 7g Linden M, Hadler D, Hofmann S. Hum. Psychopharmacol. 1997; 12: 445
    • 7h Zhuang Z.-P, Kung M.-P, Mu M, Kung HF. J. Med. Chem. 1998; 41: 157
    • 7i Norman MH, Minick DJ, Rigdon GC. J. Med. Chem. 1996; 39: 149
    • 7j Belliotti TR, Brink WA, Kesten SR, Rubin JR, Wustrow DJ, Zoski KT, Whetzel SZ, Corbin AE, Pugsley TA, Heffner TG, Wise LD. Bioorg. Med. Chem. Lett. 1998; 8: 1499
    • 7k Sanner MA. Expert Opin. Ther. Pat. 1998; 8: 383
    • 7l Steiner G, Bach A, Bialojan S, Greger G, Hege H.-G, Höger T, Jochims K, Munschauer R, Neumann B, Teschendorf H.-J, Traut M, Unger L, Gross G. Drugs Future 1998; 23: 191
    • 8a Wang EC, Chen HF, Feng PK, Lin YL, Hsu MK. Tetrahedron Lett. 2002; 43: 9163
    • 8b Zhu C, Falck JR. Org. Lett. 2011; 13: 1214
    • 8c Angelin M, Rahm M, Fischer A, Brinck T, Ramström O. J. Org. Chem. 2010; 75: 5882
    • 8d Shacklady-McAtee DM, Dasgupta S, Watson MP. Org. Lett. 2011; 13: 3490
    • 8e Wrigglesworth JW, Cox B, Lloyd-Jones GC, Booker-Milburn KI. Org. Lett. 2011; 13: 5326
    • 8f Augner D, Gerbino DC, Slavov N, Neudörfl J, Schmalz H. Org. Lett. 2011; 13: 5374
    • 8g Honzl J. Coll. Czech. Chem. Commun. 1956; 21: 725
    • 8h Perjessy A, Lacova M, Hrnciar P. Coll. Czech. Chem. Commun. 1971; 35: 2775
    • 8i Heidenbluth VK, Tonjes H, Scheffler R. J. Prakt. Chem. 1965; 30: 204
    • 8j Ang WS, Halton BB. Aust. J. Chem. 1971; 24: 851
    • 8k Watanabe H, Mao C.-L, Barnish IT, Hauser CR. J. Org. Chem. 1969; 34: 919
    • 8l Parham WE, Jones LD. J. Org. Chem. 1976; 41: 1188
    • 8m Hendi MS, Natalie KJ, Hendi SB. Jr, Campbell JA, Greenwood TD, Wolfe JF. Tetrahedron Lett. 1989; 30: 275
    • 8n Couture A, Deniau E, Grandclaudon P. Tetrahedron 1997; 53: 10313
    • 8o Couture A, Deniau E, Ionescu D, Grandclaudon P. Tetrahedron Lett. 1998; 39: 2319
    • 8p Marosvolgyi-Hasko D, Takacs A, Riedl Z, Kollar L. Tetrahedron 2011; 67: 1036
    • 8q Cho CS, Ren WX. Tetrahedron Lett. 2009; 50: 2097
    • 8r Wang C, Sun C, Weng F, Gao M, Liu B, Xu B. Tetrahedron Lett. 2011; 52: 2984
    • 8s Li L, Wang M, Zhang X, Jiang Y, Ma D. Org. Lett. 2009; 11: 1309
    • 8t Hellal M, Cuny GD. Tetrahedron Lett. 2011; 52: 5508
    • 8u Augner D, Gerbino DC, Slavov N, Neudörfl J.-M, Schmalz H.-G. Org. Lett. 2011; 13: 5375
    • 8v Heugebaert TS. A, Roman BI, Stevens CV. Chem. Soc. Rev. 2012; 41: 5626
    • 8w Zhu C, Falck JR. Chem. Commun. 2012; 48: 1674
    • 8x More V, Rohlmann R, Manchenõ OG, Petronzi C, Palombi L, De Rosa A, Di Molac A, Massa A. RSC Advances 2012; 2: 3592
    • 8y Shi L, Hu L, Wang J, Cao X, Gu H. Org. Lett. 2012; 14: 1876
  • 9 Tyagi V, Khan S, Chauhan PM. S. Tetrahedron Lett. 2013; 54: 1279
  • 10 Procedure for the Synthesis of 3a Amide 1a (1 mmol), isocyanide 2a (1.2mmol), Pd(OAc)2 (10 mol%), Cs2CO3 (2 mmol.), and DMF (2 mL) as a solvent were added in a 10 mL reaction glass vial containing a stirring bar, the vial was sealed tightly with a Teflon cap and placed in microwave cavity for 15 min at a preselected temperature of 120 °C. After completion of the reaction as indicated by TLC, the resulting mixture was filtered through a pad of Celite, and the Celite was rinsed with EtOAc. The solvent was evaporated under reduced pressure, and the residue was purified by flash column chromatography on silica gel (eluent: hexane–EtOAc) affording the corresponding coupling product 3a in 89% yield. Solid; yield 89%, mp 136–138 °C. FTIR (KBr): 2985, 2410, 1722, 1690, 1656, 1287, 1132 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.11 (d, J = 7.5 Hz, 1 H), 8.03 (d, J = 6.6 Hz, 1 H), 7.81–7.66 (m, 2 H), 7.39–7.35 (m, 2 H), 7.25–7.11 (m, 2 H), 1.51 (s, 9 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 166.7, 162.9, 159.7, 146.8, 133.6, 132.6, 131.4, 130.3, 130.2, 128.6, 127.4, 123.7, 115.2, 114.9, 54.0, 30.6 ppm. ESI-HRMS: m/z calcd for C18H17FN2O [M + H]+: 297.1403; found: 297.1391.