J. Y. L. Chung* et al. (Merck Research Laboratories, Rahway, USA and Merck Sharp & Dohme Research Laboratories, Hoddesdon, UK)

Asymmetric Synthesis of a Glucagon Receptor Antagonist via Friedel–Crafts Alkylation of an Indole with Chiral α-Phenyl Benzyl Cation

Synthesis of a Glucagon Receptor Antagonist

Significance: The target glucagon receptor antagonist is a candidate for the treatment of type 2 diabetes. Key steps in the synthesis of the sterically congested 1,1,2-triarylalkane core are (1) the asymmetric Noyori hydrogenation of ketone C involving a dynamic kinetic resolution and (2) the anti-selective Friedel–Crafts alkylation of the fluoroindole F by chiral benzylic carbocation G.

Comment: Optimal Friedel–Crafts diastereoselectivity and yield were achieved with nosyl-protected indole F using TFA as solvent and catalytic MsOH. A highly efficient, large-scale Larock-type synthesis of fluoroindole F from 2-bromoaniline was also developed. For the stereochemistry of the anti-selective Friedel–Crafts alkylation, see: J. Y. L. Chung et al. Org. Lett. 2008, 10, 3037.