Synlett 2013; 24(2): 177-180
DOI: 10.1055/s-0032-1317922
letter
© Georg Thieme Verlag Stuttgart · New York

New Thiochromans via Reductive Cyclization of Thiophenol Derivatives

André Niermann
Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany   Fax: +49(30)83855367   Email: hans.reissig@chemie.fu-berlin.de
,
Janine E. Grössel
Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany   Fax: +49(30)83855367   Email: hans.reissig@chemie.fu-berlin.de
,
Hans-Ulrich Reissig*
Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany   Fax: +49(30)83855367   Email: hans.reissig@chemie.fu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 01 November 2012

Accepted after revision: 23 November 2012

Publication Date:
11 December 2012 (online)


Abstract

Reductive cyclization of sulfur-containing substrates 1 and 5 with samarium diiodide afforded the corresponding thiochroman derivatives with excellent diastereoselectivities. Cyclization of 1 is facilitated by geminal dimethyl substitution, which accelerates the reductive coupling and prevents samarium diiodide induced dehalogenation. Bromo-substituted dihydrothiochroman derivative 8 was further functionalized in subsequent reactions. Analogously, bromo-substituted hexahydroquinoline derivative 10 was diastereo­selectively prepared in satisfying yield.

 
  • References and Notes


    • For selected reviews, see:
    • 1a Molander GA, Harris CR. Tetrahedron 1998; 54: 3321
    • 1b Krief A, Laval A.-M. Chem. Rev. 1999; 99: 745
    • 1c Kagan HB. Tetrahedron 2003; 59: 10351
    • 1d Edmonds DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
    • 1e Berndt M, Gross S, Hölemann A, Reissig H.-U. Synlett 2004; 422
    • 1f Gopalaiah K, Kagan HB. New J. Chem. 2008; 32: 607
    • 1g Nicolaou KC, Ellery S, Chen J. Angew. Chem. Int. Ed. 2009; 48: 7140 ; Angew. Chem. 2009, 121, 7276
    • 1h Procter DJ, Flowers RA. II, Skrydstrup T. Organic Synthesis using Samarium Diiodide: A Practical Guide . Royal Society of Chemistry; Cambridge: 2010
    • 1i Beemelmanns C, Reissig H.-U. Chem. Soc. Rev. 2011; 40: 2199
    • 1j Harb HY, Procter DJ. Synlett 2012; 23: 6
    • 2a Dinesh CU, Reissig H.-U. Angew. Chem. Int. Ed. 1999; 38: 789 ; Angew. Chem. 1999, 111, 874
    • 2b Nandanan E, Dinesh CU, Reissig H.-U. Tetrahedron 2000; 56: 4267
    • 2c Berndt M, Reissig H.-U. Synlett 2001; 1290
    • 2d Ohno H, Maeda S.-I, Okumura M, Wakayama R, Tanaka T. Chem. Commun. 2002; 316
    • 2e Ohno H, Wakayama R, Maeda S.-I, Iwasaki H, Okumura M, Iwata C, Mikamiyama H, Tanaka T. J. Org. Chem. 2003; 68: 5909
    • 2f Ohno H, Okumura M, Maeda S.-I, Iwasaki H, Wakayama R, Tanaka T. J. Org. Chem. 2003; 68: 7722
    • 2g Wefelscheid UK, Berndt M, Reissig H.-U. Eur. J. Org. Chem. 2008; 3635
    • 2h Niermann A, Reissig H.-U. Synlett 2011; 525
    • 2i Berndt M, Hölemann A, Niermann A, Bentz C, Zimmer R, Reissig H.-U. Eur. J. Org. Chem. 2012; 1299

      For related ketyl–aryl couplings, see:
    • 3a Kise N, Suzumoto T, Shono T. J. Org. Chem. 1994; 59: 1407
    • 3b Schmalz H.-G, Siegel S, Bats JW. Angew. Chem., Int. Ed. Engl. 1995; 34: 2383 ; Angew. Chem. 1995, 107, 2597
    • 3c Shiue J.-S, Lin M.-H, Fang J.-M. J. Org. Chem. 1997; 62: 4643
    • 3d Heimann J, Schäfer HJ, Fröhlich R, Wibbeling B. Eur. J. Org. Chem. 2003; 2919
    • 4a Berndt M, Hlobilova I, Reissig H.-U. Org. Lett. 2004; 6: 957
    • 4b Aulenta F, Berndt M, Brüdgam I, Hartl H, Sörgel S, Reissig H.-U. Chem. Eur. J. 2007; 13: 6047
    • 4c Wefelscheid UK, Reissig H.-U. Adv. Synth. Catal. 2008; 350: 65
    • 4d Wefelscheid UK, Reissig H.-U. Tetrahedron: Asymmetry 2010; 21: 1601
    • 6a Gross S, Reissig H.-U. Org. Lett. 2003; 5: 4305
    • 6b Blot V, Reissig H.-U. Synlett 2006; 2763
    • 6c Blot V, Reissig H.-U. Eur. J. Org. Chem. 2006; 4989
    • 6d Beemelmanns C, Reissig H.-U. Org. Biomol. Chem. 2009; 7: 4475
    • 6e Beemelmanns C, Blot V, Gross S, Lentz D, Reissig H.-U. Eur. J. Org. Chem. 2010; 2716
    • 6f Beemelmanns C, Reissig H.-U. Angew. Chem. Int. Ed. 2010; 49: 8021 ; Angew. Chem. 2010, 122, 8195
    • 6g For a related electrochemical cyclization, see: Kise N, Mano T, Sakurai T. Org. Lett. 2008; 10: 4617
  • 7 Aulenta F, Wefelscheid UK, Brüdgam I, Reissig H.-U. Eur. J. Org. Chem. 2008; 2325
  • 8 Spruce LW, Gale JB, Berlin KD, Verma AK, Breitman TR, Ji X, Van der Helm D. J. Med. Chem. 1991; 34: 430

    • For selected publications dealing with the synthesis of thiochroman derivatives, see:
    • 9a Takido T, Itabashi K, Takagi Y. J. Heterocycl. Chem. 1995; 32: 687
    • 9b Nenajdenko V, Sanin A, Churakov A, Howard J, Balenkova E. Chem. Heterocycl. Compd. 1999; 35: 549
    • 9c Kumar P, Bodas MS. Tetrahedron 2001; 57: 9755
    • 9d Katritzky AR, Button MA. C. J. Org. Chem. 2001; 66: 5595
    • 9e Bath S, Laso NM, Lopez-Ruiz H, Quiclet-Sire B, Zard SZ. Chem. Commun. 2003; 204
    • 9f Saito T, Horikoshi T, Otani T, Matsuda Y, Karakasa T. Tetrahedron Lett. 2003; 44: 6513
    • 9g Liepa AJ, Nguyen O, Saubern S. Aust. J. Chem. 2005; 58: 864
    • 9h Jafarzadeh M, Amani K, Nikpour F. Tetrahedron Lett. 2005; 46: 7567
    • 9i Wang W, Li H, Wang J, Zu L. J. Am. Chem. Soc. 2006; 128: 10354
    • 9j Guha C, Pal R, Mallik AK. ARKIVOC 2012; (ix): 85 ; and references cited in this article
  • 10 General Procedure for Samarium Diiodide Induced Cyclizations of Aryl Ketones: HMPA (10 equiv) was added to a previously prepared stock solution of SmI2 in THF (0.1 M, 2.05 equiv) under argon and the solution was stirred for 20 min. During this time the solution turned from dark blue to dark violet. In a separate flask, the substrate (1 equiv) and t-BuOH (2 equiv) were dissolved in THF (10 mL/mmol cyclization precursor) under argon. Argon was bubbled through the solution for 20 min. The substrate solution was then transferred with a syringe to the samarium diiodide solution and the resulting mixture was stirred at r.t. or –20 °C until the color changed from violet to grey. Saturated aq Na-K-tartrate solution was added, the organic layer was separated and the aqueous layer was extracted three times with Et2O. The combined organic layers were washed with H2O and brine, dried with MgSO4 and the solvents were removed under reduced pressure to give the crude product, which still contained small amounts of HMPA. Flash chromatography with aluminum oxide (activity grade III) yielded the cyclization products.
  • 11 Niermann A. Dissertation . Freie Universität Berlin: 2012
  • 12 Cyclization of Compound 1: According to the general procedure, the samarium diiodide solution in THF (27.2 mL, 2.59 mmol), HMPA (2.21 mL, 12.6 mmol), 1 (0.361 g, 1.26 mmol), and t-BuOH (0.187 g, 2.52 mmol) afforded after purification by flash chromatography (hexane–EtOAc, 9:1) compound 8 in 73% yield (265 mg) as a colorless oil. Analytical data of (4R*,4aS*)-6-Bromo-2,2,4-trimethyl-3,4,4a,7-tetrahydro-2H-thiochromen-4-ol (8): 1H NMR (700 MHz, CDCl3): δ = 1.21, 1.30, 1.37 (3 × s, 3 H each, CH3), 1.57 (br s, 1 H, OH), 1.99, 2.02 (AB system, J AB = 13.4 Hz, 1 H each, 3-H), 3.02 (mc, 1 H, 4a-H), 3.07 (dddd, J = 1.2, 3.8, 7.5, 22.4 Hz, 1 H, 7-H), 3.17 (dddd, J = 1.9, 3.4, 7.4, 22.4 Hz, 1 H, 7-H), 5.96 (ddd, J = 1.3, 3.4, 3.8 Hz, 1 H, 8-H), 6.30 (ddd, J = 1.2, 1.9, 3.5 Hz, 1 H, 5-H). 13C NMR (176 MHz, CDCl3): δ = 24.6, 30.6, 32.7 (3 × q, CH3), 37.2 (t, C-7), 43.6 (s, C-2), 53.7 (d, C-4a), 56.8 (t, C-3), 73.6 (s, C-4), 119.6 (s, C-6), 126.2 (d, C-5), 126.9 (d, C-8), 129.3 (s, C-8a). IR (film): 3400 (O–H), 3010–2850 (=C–H, C–H), 1665 (C=C) cm–1. Anal. Calcd for C12H17BrOS (289.2): C, 49.83; H, 5.92. Found: C, 49.78; H, 5.77.
  • 13 Large amounts of dehalogenated compounds were isolated indicating that the increase in rate due to geminal dimethyl substitution cannot compensate the very fast samarium diiodide mediated deiodination.
  • 14 Oxidation of Compound 8 with m-CPBA: m-CPBA (0.313 g, 1.82 mmol) was added to a solution of alkenyl bromide 8 (0.150 g, 0.52 mmol) in CH2Cl2 (2 mL) at 0 °C. After stirring for 3 h at 0 °C, the solvent was removed under reduced pressure and the crude material was subjected to column chromatography on silica gel (hexane–EtOAc, 7:3). Sulfone 14 was isolated as a colorless solid (70 mg, 42%). Analytical data of (4R*,4aS*)-6-Bromo-2,2,4-trimethyl-1,1-dioxo-3,4,4a,7-tetrahydro-2H-benzo-thiopyran-4-ol (14): mp 160–164 °C. 1H NMR (500 MHz, CDCl3): δ = 1.24, 1.34, 1.41 (3 × s, 3 H each, CH3), 1.83 (br s, 1 H, OH), 1.88, 2.38 (2 × d, J = 14.4 Hz, 1 H each, 3-H), 3.26 (dddd, J = 1.3, 3.9, 7.8, 23.6 Hz, 1 H, 7-H), 3.36 (dddd, J = 2.0, 3.1, 7.5, 23.6 Hz, 1 H, 7-H), 3.63 (mc, 1 H, 4a-H), 6.29 (mc, 1 H, 5-H), 6.78 (mc, 1 H, 8-H). 13C NMR (126 MHz, CDCl3): δ = 22.0, 22.8, 24.5 (3 × q, Me), 36.0 (t, C-7), 49.7 (d, C-4a), 51.9 (t, C-3), 57.2 (s, C-2), 72.9 (s, C-4), 118.8 (s, C-6), 125.5 (d, C-5), 132.8 (s, C-8a), 135.2 (d, C-8). IR (film): 3480 (O–H), 2990–2855 (=C–H, C–H), 1130 (S=O) cm–1. HRMS (ESI–TOF–MS): m/z [M + Na]+ calcd for C12H17BrO3SNa: 342.9979; found: 342.9977.