Polymer-Supported Iron(III) Catalyst for the Selective Oxidation of Toluene

Significance: Poly(4-vinylpyridine-co-divinylbenzene)-supported iron(III) catalysts bearing different amounts (2–50%) of DVB cross-linker [Fe(III)-PVPDVB2–50%] were prepared and applied to the oxidation of toluene with hydrogen peroxide (73.0–89.7% conversion, 88.3–91.2% selectivity to benzoic acid). The polymer-supported catalyst containing 10% DVB [Fe(III)-PVPDVB10%] led to the selective oxidation of toluene to benzoic acid in 90% conversion with up to 96% selectivity under optimized conditions.

Comment: The catalytic activity of reused Fe(III)-PVPDVB10% decreased due to leaching of iron ions from the polymer support. No oxidation of toluene occurred in the absence of the polymer-supported iron catalysts or in the presence of iron-free PVPDVB. The toluene oxidation with the homogeneous counterpart, FeCl₃·H₂O, resulted in lower substrate conversion (<58%), while the reaction selectivity was as high as with the polymer catalyst (92%).