H. LV, B. TIWARI, J. MO, C. XING, Y. R. CHI* (NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE)
Highly Enantioselective Addition of Enals to Isatin-Derived Ketimines Catalyzed by N-Heterocyclic Carbenes:
Synthesis of Spirocyclic \(\gamma \)-Lactams

NHC-Catalyzed Annulation of Isatin \(N \)-Boc Ketimines and Enals

\[
\begin{align*}
\text{R}^1 = & \text{H, Me, OMe, Cl} \quad \text{R}^2 = \text{H, Me, Bn, Ac} \\
\text{R}^3 = & \text{Ar, Alk}
\end{align*}
\]

Significance: Chi and co-workers report an N-heterocyclic carbene (NHC)-catalyzed annulation of isatin \(N \)-Boc imines with enals, which affords spirocyclic oxindole-\(\gamma \)-lactams bearing one quaternary chiral center in good diastereo- and excellent stereoselectivities (dr up to >20:1 and er > 99.5:0.5). Ketimines and \(\gamma \)-aryl enals with electron-donating substituents lead to better yield and selectivity compared to electron-withdrawing substituents. The presence of a trace of water is beneficial for the conversion of the reaction. The resulting products can be easily deprotected to free \(\gamma \)-lactams in high yield.

Comment: \(\gamma \)-Lactams are privileged scaffolds found in naturally occurring and synthetic biologically active compounds. Herein, the authors have developed a novel NHC-catalyzed annulation methodology, which allows for a rapid construction of spirocyclic oxindole-\(\gamma \)-lactams with high diastereoselectivity and enantioselectivity. More efficient catalysts and the application to more challenging substrates are expected.

Selected examples:

- 83% yield dr > 20:1 er = 99.5:0.5
- 64% yield dr = 17:1 dr er = 99.5:0.5
- 80% yield dr > 20:1 er = 99.5:0.5
- 64% yield dr = 4:1 er = 97:3

Removal of the Boc protecting group:

\[
\begin{align*}
\text{BocN} & \quad \text{BocN} \\
\text{Me} & \quad \text{Me} \\
\text{Ph} & \quad \text{Ph}
\end{align*}
\]

83% yield dr > 20:1 er = 99.5:0.5

- 64% yield dr = 17:1 dr er = 99.5:0.5
- 80% yield dr > 20:1 er = 99.5:0.5
- 64% yield dr = 4:1 er = 97:3

SYNFACTS Contributors: Benjamin List, Qinggang Wang

DOI: 10.1055/s-0032-1317902; **Reg-No.:** B11512SF