Isatoic Anhydrides via C-H Activation

*Starred examples were run with pivalic acid (1 equiv):
Substrate scope - aryl

Significance: Reported is the synthesis of isatoic anhydrides $\mathbf{2}$ via the carbonylation of substituted anilines $\mathbf{1}$ utilizing a $\mathrm{C}-\mathrm{H}$ activation procedure. Optimization studies demonstrated the beneficial effects of potassium iodide and the importance of oxidant and solvent choice. A substrate-scope screen showed that electron-rich anilines were the most reactive (2a-c). However, electron-deficient anilines proved useful substrates with the addition of pivalic acid and increased pressure (2d-i). In the case of $\mathbf{2 a}$, a catalytic procedure [with respect to $\mathrm{Cu}(\mathrm{OAc})_{2}$] using oxygen as the terminal oxidant was demonstrated, affording the desired isatoic anhydride in marginally reduced yield. Derivatization of $\mathbf{2 a}$ to the ortho-amino acid $\mathbf{3 a}$, ester $\mathbf{3 b}$, and primary amide $\mathbf{3 c}$ was reported.

[^0]Synfacts 2013, 9(1), 0019 Published online: 17.12.2012
Dol: 10.1055/s-0032-1317877; Reg-No.: V16112SF

Comment: Isatoic anhydrides are useful reagents for the preparation of anthranilic acid derivatives and various heterocycles alike (see Review below). Traditionally these heterocycles have been prepared via various multi-step sequences, for example from the anthranilic acids themselves (E. C. Wagner, M. F. Fegley Org. Synth. 1947, 27, $45)$ or via oxidation of phthalimides. The current report is attractive for several reasons, including circumventing the need for regioselective prefunctionalization and employing readily available anilines $\mathbf{2}$ as starting material.

Review: G. M. Coppola Synthesis 1980, 505-536.

Gategory

Synthesis of Heterocycles

Key words

carbonylation
palladium

aniline

C-H activation

[^0]: synfacts Contributors: Victor Snieckus, Matthew O. Kitching

