Significance: Reported is the synthesis of indeno[1,2-c]chromenes \(3\) and \(4\) via a palladium-catalyzed reaction of 2-alkynylbromobenzenes \(1\) with either 2-(2-arylethynyl)phenols \(2\) or with water. A range of ligands was used during the optimization study to reveal that the reaction proceeds only with Cy3P as ligand (eq. 1). Sodium methoxide in toluene or 1,4-dioxane was better than other combinations. The substrate scope of this transformation was modestly demonstrated. The reaction also proceeded to give \(3\) in 78% yield by treatment of 1-chloro-2-(2-phenylethynyl)benzene with \(2\) \((R^3 = H, R^4 = Ph)\). Surprisingly, re-optimization was required in the reaction of \(1\) with water (eq. 2). Both alkyl- and aryl-substituted alkenes were tolerated under the optimized conditions. However, the reaction parameters had to be re-screened to give a satisfactory yield of compounds with electron-withdrawing groups \((R^2 = 4-\text{ClC}_6\text{H}_4, 4-\text{AcC}_6\text{H}_4)\).

Comment: The [6.5.6.6]-tetracyclic core of indeno[1,2-c]chromenes \(3\) and \(4\) is present in several bioactive compounds (B. S. Min et al. Bioorg. Med. Chem. Lett. 2012, 22, 7436). Very few synthetic methods such as iron-mediated [3+2]-annulation reactions are available to provide access to this tetracyclic system (Z.-Q. Wang et al. Org. Lett. 2011, 13, 14). The present method provides a rapid construction of various substituted indenochromenes from easily accessible starting materials. One drawback of this method is the lower yield for electron-poor substrates. Although, this work provides a facile synthesis of indeno[1,2-c]chromenes, it is strikingly similar to the authors’ previous work (Y. Luo, L. Hong, J. Wu Chem. Commun. 2011, 47, 5298).

SYNFACTS Contributors: Victor Snieckus, Suneel P. Singh

SYNFACTS 2013, 9(1), 0031 Published online: 17.12.2012
DOI: 10.1055/s-0032-1317868; Reg-No.: V15212SF