Synlett 2013; 24(2): 249-253
DOI: 10.1055/s-0032-1317783
letter
© Georg Thieme Verlag Stuttgart · New York

Toward Fluorinated Aminoglycosides: Structural Studies of Phenylhydrazine Condensation with Carbohydrate Derivatives

Antonio Franconetti*
Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 1203, 41071 Sevilla, Spain   Fax: +34(95)4624960   Email: afranconetti@us.es   Email: fcabrera@us.es
,
Pastora Borrachero
Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 1203, 41071 Sevilla, Spain   Fax: +34(95)4624960   Email: afranconetti@us.es   Email: fcabrera@us.es
,
Manuel Gómez-Guillén
Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 1203, 41071 Sevilla, Spain   Fax: +34(95)4624960   Email: afranconetti@us.es   Email: fcabrera@us.es
,
Francisca Cabrera-Escribano*
Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 1203, 41071 Sevilla, Spain   Fax: +34(95)4624960   Email: afranconetti@us.es   Email: fcabrera@us.es
› Author Affiliations
Further Information

Publication History

Received: 28 October 2012

Accepted: 15 November 2012

Publication Date:
11 December 2012 (online)


Abstract

The reaction of phenylhydrazine with a sugar dialdehyde in water, as a key step for the synthesis of the 3-amino-3-deoxy-d-glucose moiety contained in kanamycin, has been revisited. Structural studies (IR and NMR as well as a simple theoretical model based on energy-minimization calculations and MD calculations) reported herein support the observed stereo- and regioselectivity. Efforts to improve the reproducibility and viability of the process as part of a convenient approach towards fluorinated kanamycin are also now presented.

 
  • References and Notes

    • 1a Li J, Chang T. Anti-Infect. Agents Med. Chem. 2006; 5: 255
    • 1b Corey EJ, Czakó B, Kürti L. Molecules and Medicine . John Wiley and Sons; Hoboken: 2007
  • 2 Kirk KL. Org. Process Res. Dev. 2008; 12: 305
  • 3 Ferret H, Déchamps I, Gomez Pardo D, Van Hijfte L, Cossy J. ARKIVOC 2010; (viii) 1: 26
  • 4 Vera-Ayoso Y, Borrachero P, Cabrera-Escribano F, Carmona-Asenjo A, Gómez-Guillén M. Tetrahedron: Asymmetry 2004; 15: 429 ; and references cited therein
  • 5 Patroni J, Stick R. Aust. J. Chem. 1985; 38: 947 ; and references cited therein
  • 6 Synthesis of Compound 2 (Method B) NaIO4 (7.7 g, 36 mmol) was dissolved in H2O (95 mL). After cooling at 5 °C, a solution of methyl 4,6-O-benzylidene-α-d-glucopyranoside (5 g, 17.73 mmol) in MeOH (95 mL) was added. The mixture was stirred in the dark for 20 h at r.t. EtOH was added to precipitate iodates, and the filtered solution was evaporated under vacuum and dried to obtain dialdehyde 2 (98% yield). 13C NMR (125.7 MHz, D2O): δ = 196.8 (CHO), 135.5–126.4 (Ph), 101.2 (CHPh), 96.6 (C-1), 75.9 (C-4), 71.3 (C-6), 64.6 (C-5), 48.9 (OCH3) ppm. HRMS (CI): m/z calcd for C13H15O5 [M–CHO]: 251.0919; found: 251.0913; and m/z calcd for C13H13O5 [M–OMe]: 249.0763; found 249.0766.
  • 7 Preparation and Most Relevant Data of Compound 4
    Conditions A5
    Phenylhydrazine (250 μL, 2.59 mmol) was added to a solution of compound 2 (0.5 g, 1.79 mmol) in H2O (125 mL) at 85 °C. On shaking the yellow mixture rapidly with ice-water, a yellow solid precipitated. This crude product was filtered off and purified by recrystallization from a small volume of butan-1-ol to give a yellow solid, identified as a mixture of 4 (95.2 mg, 15%) and 4a (27.7 mg, 7%). Attempted column chromatography on silica gel resulted in rapid decomposition. Conditions E A solution of compound 2 (0.33 g, 1.18 mmol) in H2O (100 mL) was heated at 92 °C, under argon in darkness. The solution was cooled, then NaOAc (0.39 g, 4.73 mmol) was added followed by slow addition of phenylhydrazine hydrochloride (0.34 g, 2.36 mmol). After rapid cooling to –15 °C and shaking of the mixture, a yellow solid precipitated. This product was filtered off, washed with cool H2O, recrystallized from butan-1-ol and dried under vacuum to give a yellow solid which was identified as pure methyl 4,6-O-benzylidene-3-deoxy-3-phenylazo-α-d-glucopyranoside (4, 68.6 mg, 16%). Rf = 0.88 (CH2Cl2–acetone = 49:1). 1H NMR (300 MHz, CDCl3): δ = 7.74–7.29 (m, 10 H, Ph), 5.77 (s, 1 H, H-7), 5.48 (t, 1 H, H-3, J 3,4 = J 3,2 = 10.2 Hz), 4.75 (dd, 1 H, H-2, J 2,1 = 4.5, J 2,3 = 10.6 Hz), 4.72 (br s, 1 H, H-1), 4.46 (dd, 1 H, J 6ec,5 = 4.6 Hz, J 6ec,6ax = 10.2 Hz, H-6eq), 3.32 (m, 2 H, H-5 and H-6ax), 4.10 (t, 1 H, H-4, J 4,3 = J 4,5 = 10.0 Hz), 3.50 (s, 3H, OCH3) ppm. HRMS (CI): m/z calcd for C20H22N2O5: 370.1529; found: 370.1522.
    • 8a Liu Y.-H, Li G, Yang L.-M. Tetrahedron Lett. 2009; 50: 343
    • 8b Trofimov BA, Myachina GF, Ermakova TG, Kuznetsova NP, Volkova LI, Sultangareev RG, Larina LI, Klyba LV, Sukhanov GT, Sakovich GV. Russ. J. Org. Chem. 2009; 45: 1683
  • 9 Hunter CA, Lawson KR, Perkins J, Urch CJ. J. Chem. Soc., Perkin Trans. 2 2001; 651
    • 10a Rode MB, Hofer ST, Kugler DM. The Basics of Theoretical and Computational Chemistry . Wiley-VCH; Weinheim: 2007
    • 10b Young D. Computational Chemistry . John Wiley and Sons; New York: 2001
  • 11 Sharma M, Bernacki RJ, Hillman MJ, Korytnyk W. Carbohydr. Res. 1993; 240: 85
  • 12 Anastas Y, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 1998
    • 13a Albert R, Dax K, Pleschko R, Stutz AE. Carbohydr. Res. 1985; 137: 282
    • 13b Faghih R, Cabrera-Escribano F, Castillon S, Garcia J, Olesker A, That Thang T. J. Org. Chem. 1986; 51: 4558
  • 14 Brimacombe JS, Bryan JG. H, Husain A, Stacey M, Tolley MS. Carbohydr. Res. 1967; 3: 318
  • 15 Preparation of Compound 12 A solution of compound 10 (109 mg, 0.355 mmol) in dry MeCN (6.5 mL) was treated with DAST (236 μL, 1.785 mmol) at 0 °C under argon. After several minutes, the cooling bath was removed, and the mixture was heated to reflux for 6 h, monitoring the reaction by TLC. On completion, after evaporation of the solvent, the residue was treated with CH2Cl2 (20 mL) and cold sat. aq NaHCO3 (50 mL). The aqueous layer was extracted with CH2Cl2 (3 × 20 mL), and the combined organic layers were washed with sat. aq NaCl (50 mL), dried (Na2SO4), filtered, and concentrated. The residue was purified by column chromatography on silica gel (1:5 to 1:3 gradient hexane–Et2O with 1% Et3N) to give unreacted 10 (9%), compound 12 (25 mg, corresponding to 25% yield from converted substrate) and the epimeric mixture 13/14 [63% yield, characterized by transformation into the corresponding (1R and 1S)-2,5-anhydro-3-azido-6-O-tert-butyl-diphenylsilyl-3,4-dideoxy-1,4-difluoro-1-O-methyl-d-talitols.4] Selected Analytical Data Compound 12: solid; mp 56–60 °C; Rf = 0.44 (Et2O–hexane = 1:3). 1H NMR (300 MHz, CD3COCD3): δ = 7.49–7.36 (m, 5 H, Ph), 5.81 (s, 1 H, CHPh), 4.91 (dd, 1 H, 3 J 1,F = 7.8 Hz, J 1,2 = 1.7 Hz, H-1), 4.78 (ddd, 1 H, 2 J 2,F = 48.2 Hz, J 2,3 = 2.3 Hz, H-2), 4.27 (dd, 1 H, J 6,6′ = 11.7 Hz, J 5,6 = 1.7 Hz, H-6), 4.12 (ddd, 1 H, J 3,4 = 10.6 Hz, J 4,5 = 9.0 Hz, 4 J 4,F = 1.6 Hz, H-4), 3.92 (ddd, 3 J 3,F = 29.0 Hz, H-3), 3.89–3.83 (m, 2 H, H-5 and H-6′), 3.44 (s, 3 H, OCH3) ppm. 13C NMR (75.8 MHz, CD3COCD3): δ = 138.8–127.2 (Ph), 102.5 (CHPh), 99.5 (d, 2 J C1,F = 31.0 Hz, C-1), 89.8 (d, 1 J C2,F =180.0 Hz, C-2), 74.6 (C-4), 69.2 (C-6), 64.9 (C-5), 59.7 (d, 2 J C3,F = 16.6 Hz), 55.7 (OCH3) ppm. HRMS (CI): m/z calcd for C14H16FN3O4 + H: 310.1203; found: 310.1207.
  • 16 Michalik M, Hein M, Frank M. Carbohydr. Res. 2000; 327: 185
  • 17 Baer HH, Gan Y. Carbohydr. Res. 1991; 210: 233
  • 18 Vera-Ayoso Y, Borrachero P, Cabrera-Escribano F, Gómez-Guillén M, Caner J, Farrás J. Synlett 2010; 271