Direct Benzylic Metalation of a Phenethylamine Derivative: Potassium as the Key to Both Generation and Stabilization of a ‘Labile Anion’

Metalation of 2-Phenylethylidimethylamine under Mild Conditions

Significance: The direct benzylic metalation of 2-phenylethylamine derivatives suffers from β-elimination. The authors found that benzylic metalation of 2-phenylethylidimethylamine can be performed at –78 °C with a mixture of t-BuLi and t-BuOK. The metalated species was found to be stable up to –40°C.

Comment: Interestingly, the metalation cannot be performed with a mixture of t-BuLi and t-BuOLi. Therefore, the potassium cation seems to be crucial for an efficient conversion. Theoretical and structural studies reveal that potassium is important for the lowering of the barrier of the initial deprotonation, as well as for stabilization of the labile anion.

Selected examples:

1. **Bu, TMS, SiMePh2, CPh2OH, C(C5H10)OH**

 - Bu, 92% yield
 - TMS, 84% yield
 - SiMePh2, 60% yield
 - CPh2OH, 74% yield
 - C(C5H10)OH, 84% yield

SYNFACTS Contributors: Paul Knochel, Andreas K. Steib

SYNFACTS 03012013, 9(1), 0093 Published online: 17.12.2012
DOI: 10.1055/s-0032-1317743; Reg-No.: P16512SF