Pd-PEPPSI-IPentCl – Selective Coupling of Secondary Organozinc Nucleophiles

Significance: The authors report the new catalyst Pd-PEPPSI-IPentCl, which highly efficiently couples secondary alkylzinc reagents to (hetero)aryl bromides, chlorides and triflates. The corresponding alkylated aromatics are obtained in excellent yield and with high regioselectivity.

Comment: \(\beta\)-Hydride elimination (BHE) constitutes one of the main drawbacks for the cross-coupling of secondary alkyl reagents, especially if they react with electron-rich coupling partners. These problems are overcome by the new palladium-catalyst, which bears bulkier substituents and additionally, is characterized by a decreased electron density, thus favoring reductive elimination instead of BHE. Density functional theory (DFT) calculations support the theoretical selectivities.

Selected examples:

- **99% yield**
 - n/r > 99:1
 - \(\text{Ar} = \text{Ar, O- and N-HetAr}\)
 - \(\text{R}_1^1 + \text{R}_2^2 = \text{Boc-protected piperidine}\)
 - \(\text{X} = \text{Br, Cl, OTf}\)

- **85% yield**
 - n/r = 49:1
 - \(\text{Ar} = \text{Ar, O- and N-HetAr}\)
 - \(\text{R}_1^1 + \text{R}_2^2 = \text{Boc-protected piperidine}\)
 - \(\text{X} = \text{Br, Cl, OTf}\)

- **95% yield**
 - n/r > 99:1
 - \(\text{Ar} = \text{Ar, O- and N-HetAr}\)
 - \(\text{R}_1^1 + \text{R}_2^2 = \text{Boc-protected piperidine}\)
 - \(\text{X} = \text{Br, Cl, OTf}\)

- **95% yield**
 - n/r > 99:1
 - \(\text{Ar} = \text{Ar, O- and N-HetAr}\)
 - \(\text{R}_1^1 + \text{R}_2^2 = \text{Boc-protected piperidine}\)
 - \(\text{X} = \text{Br, Cl, OTf}\)

- **84% yield**
 - n/r > 99:1
 - \(\text{Ar} = \text{Ar, O- and N-HetAr}\)
 - \(\text{R}_1^1 + \text{R}_2^2 = \text{Boc-protected piperidine}\)
 - \(\text{X} = \text{Br, Cl, OTf}\)