Synthesis of Maxipost

Significance: Maxipost is a post-stroke neuroprotective agent that acts by opening large conductance Ca\(^{2+}\)-activated (maxi-K) potassium channels. Previous syntheses of maxipost by asymmetric fluorination of oxindoles required protection of the oxindole nitrogen as the N-Boc derivative. The route depicted features the direct asymmetric catalytic fluorination of the oxindole \(A\) using \(N\)-fluorobenzenesulfinimide (B) in the presence of 10 mol% of a chiral complex derived from scandium triflate and the amine oxide ligand \(C\).

Comment: Attempts to perform the maxipost synthesis on a 3.5 mmol scale resulted in decreased yield and enantioselectivity (53% yield, 86% ee) due to the low solubility of the substrate. By contrast, the asymmetric fluorination of oxindole \(D\) on a 4.0 mmol scale gave \(E\) in 93% yield and 97% ee. The small selection of the 29 examples described, showed that yields and enantioselectivities are generally high.

Category

Synthesis of Natural Products and Potential Drugs

Key words

maxipost
asymmetric fluorination
scandium triflate
\(N\)-fluorobenzene-sulfonimide

Further examples of the asymmetric fluorination of oxindoles:

- % (er > 97.3)
- 85% (er > 96.4)
- 90% (er > 98.2)
- 84% (er > 95.5)