Synthesis 2012; 44(24): 3789-3796
DOI: 10.1055/s-0032-1317524
paper
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of Axially Chiral Tetrasubstituted Allenes via Lipase-Catalyzed Desymmetrization

Matthias Hammel
Department für Chemie, Universität zu Köln, 50939 Cologne, Germany   Fax: +49(221)4705102   Email: jan.deska@uni-koeln.de
,
Jan Deska*
Department für Chemie, Universität zu Köln, 50939 Cologne, Germany   Fax: +49(221)4705102   Email: jan.deska@uni-koeln.de
› Author Affiliations
Further Information

Publication History

Received: 05 August 2012

Accepted after revision: 12 October 2012

Publication Date:
25 October 2012 (online)


Abstract

Lipase from Pseudomonas fluorescens efficiently catalyzes the transesterification of prochiral tetrasubstituted allenic diols yielding highly enantioenriched axially chiral allenyl monoesters. In combination with subsequent 5-endo-trig cyclizations geminally disubstituted dihydrofurans are accessible in high optical purity.

Supporting Information

 
  • References

    • 1a Koeller KM, Wong C.-H. Nature 2001; 409: 232
    • 1b Faber K. Biotransformations in Organic Chemistry . 5th ed. Springer; Berlin: 2008
    • 1c Gotor V, Alfonso I, García-Urdiales E. Asymmetric Organic Synthesis with Enzymes . Wiley-VCH; Weinheim: 2008
    • 1d Drauz K, Gröger H, May O. Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook . 3rd ed. Wiley-VCH; Weinheim: 2012
    • 2a Schmid RD, Verger R. Angew. Chem. Int. Ed. 1998; 37: 1608 ; Angew. Chem. 1998, 110, 1694
    • 2b Bornscheuer UT, Kazlauskas RJ. Hydrolases in Organic Synthesis – Regio- and Stereoselective Biotransformations. 2nd ed. Wiley-VCH; Weinheim: 2005
    • 3a Klibanov AM. Nature 2001; 409: 241
    • 3b Reetz MT. Curr. Opin. Chem. Biol. 2002; 6: 145

      For examples of non-hydrolase activity by lipases, see:
    • 4a Torre O, Alfonso I, Gotor V. Chem. Commun. 2004; 1724
    • 4b Svedendahl M, Hult K, Berglund P. J. Am. Chem. Soc. 2005; 127: 17988
    • 4c Carlqvist P, Svedendahl M, Branneby C, Hult K, Brinck T, Berglund P. ChemBioChem 2005; 6: 331
    • 4d Li C, Feng X.-W, Wang N, Zhou Y.-J, Yu X.-Q. Green Chem. 2008; 10: 616
    • 5a Ramaswamy S, Hui RA. H. F, Jones JB. J. Chem. Soc., Chem. Commun. 1986; 1545
    • 5b Gil G, Ferre E, Meou A, Le Petit J, Triantaphylides C. Tetrahedron Lett. 1987; 28: 1647
    • 5c Jones BC. N. M, Silverton JV, Simons C, Megati S, Nishimura H, Maeda Y, Mitsuya H, Zemlicka J. J. Med. Chem. 1995; 38: 1397
    • 5d Pietzsch M, Vielhauer O, Pamperin D, Ohse B, Hopf H. J. Mol. Cat. B: Enzym. 1999; 6: 51
    • 5e Cipiciani A, Bellezza F. J. Mol. Cat. B: Enzym. 2002; 17: 261
    • 5f Carballeira JD, Krumlinde P, Bocola M, Vogel A, Reetz MT, Bäckvall J.-E. Chem. Commun. 2007; 1913
    • 5g Deska J, Bäckvall J.-E. Org. Biomol. Chem. 2009; 7: 3379
    • 5h Deska J, del Pozo Ochoa C, Bäckvall J.-E. Chem.–Eur. J. 2010; 16: 4447
    • 6a Manzuna Sapu C, Bäckvall J.-E, Deska J. Angew. Chem. Int. Ed. 2011; 50: 9731 ; Angew. Chem. 2011, 123, 9905
    • 6b For a review on enzyme-catalyzed desymmetrizations, see: García-Urdiales E, Ignacio A, Gotor V. Chem. Rev. 2005; 105: 313
    • 7a Rona P, Crabbé P. J. Am. Chem. Soc. 1969; 91: 3289
    • 7b Zelder C, Krause N. Eur. J. Org. Chem. 2004; 3968
    • 8a Tsuji J, Watanabe H, Minami I, Shimizu I. J. Am. Chem. Soc. 1985; 107: 2196
    • 8b Keinan E, Bosch E. J. Org. Chem. 1986; 51: 4006
    • 8c For a review on palladium-catalyzed allenylation, see also: Tsuji J, Mandai T. Angew. Chem., Int. Ed. Engl. 1996; 34: 2589
    • 9a Modern Allene Chemistry . Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
    • 9b Ma S. Chem. Rev. 2005; 105: 2829
    • 9c Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3074 ; Angew. Chem. 2012, 124, 3128
    • 10a Ma S. Acc. Chem. Res. 2003; 36: 701
    • 10b Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I. Chem. Rev. 2008; 108: 3174
    • 10c Shen HC. Tetrahedron 2008; 64: 3885
    • 10d Rudolph M, Hashmi AS. K. Chem. Commun. 2011; 47: 6536

      For Brønsted acid mediated cycloisomerization of allene carboxylates, see:
    • 11a Musierowicz S, Wróblewski AE. Tetrahedron 1977; 34: 461
    • 11b Krause N, Laux M, Hoffmann-Röder A. Tetrahedron Lett. 2000; 41: 9613
  • 12 Especially the anisyl derivatives 2h and 3h showed high susceptibility to acid-catalyzed cycloisomerization. Obviously, even trace amounts of acid in the NMR solvent seem to favor cyclization as signals of the corresponding dihydrofuran appear as minor impurities in the NMR spectra; see the Supporting Information.
    • 13a Marshall JA, Pinney KG. J. Org. Chem. 1993; 58: 7180
    • 13b Larivée A, Unger JB, Thomas M, Wirtz C, Dubost C, Handa S, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 304 ; Angew. Chem. 2011, 123, 318