Synlett 2012; 23(19): 2811-2813
DOI: 10.1055/s-0032-1317510
letter
© Georg Thieme Verlag Stuttgart · New York

Mild and Convenient Synthesis of Benzodithiazoles by Oxidative Cyclization of Bis(thiobenzanilides)

Zahid Hassan
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Fax: +49(381)4986412   Email: peter.langer@uni-rostock.de
,
Peter Langer*
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   Fax: +49(381)4986412   Email: peter.langer@uni-rostock.de
b   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
› Author Affiliations
Further Information

Publication History

Received: 23 August 2012

Accepted: 28 September 2012

Publication Date:
07 November 2012 (online)


Abstract

Benzodithiazoles were prepared by oxidative cyclization of bis(thiobenzanilides). The reactions were performed at room temperature under mild conditions and rely on the use of N-benzyl-DABCO tribromide.

 
  • References and Notes

    • 1a Pena P, Perez D, Guitián E, Castedo L. J. Org. Chem. 2000; 65: 6944
    • 1b Damani A. Sulfur-containing Drugs and Related Organic Compounds – Chemistry, Biochemistry, and Toxicology. Ellis Harwood; Chichester: 1989
    • 1c Cremlyn RJ. An Introduction to Organosulfur Chemistry . John Wiley; New York: 1996
    • 1d Polshettiwar V, Kaushik MP. J. Sulfur Chem. 2006; 27: 353

      For selected reviews on the synthesis of benzothiazole ring systems, see:
    • 2a Yadav PS, Devprakash Senthilkumar GP. Int. J. Pharm. Sci. Drug Res. 2011; 3: 1
    • 2b Weekes AA, Westwell AD. Curr. Med. Chem. 2009; 16: 2430
    • 2c Gupta A, Rawat SJ. Curr. Pharm. Res. 2010; 3: 13
    • 3a Bradshaw TD, Westwell AD. Curr. Med. Chem. 2004; 11: 1241
    • 3b Su X, Vicker N, Ganeshapillai D, Smith A, Purohit A, Reed MJ, Potter BV. L. Mol. Cell. Endocrinol. 2006; 248: 214
    • 4a Chakraborti AK, Rudrawar S, Kaur G, Sharma L. Synlett 2004; 1533
    • 4b Shirke VG, Bobade AS, Bhamaria RP, Khadse BG, Sengupta SR. Indian Drugs 1990; 27: 350
    • 4c Das J, Moquin RV, Liu C, Doweyko AM, Defex HF, Fang Q, Pang S, Pitt S, Shen DR, Schieven GL, Barrish JC. J. Bioorg. Med. Chem. Lett. 2003; 13: 2587
    • 4d Hays SJ, Rice MJ, Ortwine DF, Johnson G, Schwarz RD, Boyd DK, Copeland LF, Vartanian MG, Boxer PA. J. Pharm. Sci. 1994; 83: 1425
    • 4e Paget CJ, Kisner K, Stone RL, Delong DC. J. Med. Chem. 1969; 12: 1016
    • 4f Bergman JM, Coleman PJ, Cox C, Hartman GD, Lindsley C, Mercer SP, Roecker AJ, Whitman DB. WO 2006127550, 2006
    • 4g Yoshino K, Kohno T, Uno T, Morita T, Tsukamoto G. J. Med. Chem. 1986; 29: 820
    • 5a Mylari BL, Larson ER, Beyer TA, Zembrowski WJ, Aldinger CE, Dee MF, Siegel TW, Singleton DH. J. Med. Chem. 1991; 34: 108
    • 5b Sato G, Chimoto T, Aoki T, Hosokawa S, Sumigama S, Tsukidate K, Sagami F. J. Toxicol. Sci. 1999; 24: 165
  • 6 Kulkarni SS, Newman AH. Bioorg. Med. Chem. Lett. 2007; 17: 2987
  • 7 Sheng Y, Hyo YA, Xuhua W, Jie F, Van Stryland EW, Hagan DJ, Belfield KD. J. Org. Chem. 2010; 75: 3965
    • 8a Alloum AB, Bakkas S, Soufiaoui M. Tetrahedron Lett. 1997; 38: 6395
    • 8b Seijas JA, Vazquez MP. T, Reboredo MR, Campo JC, Lopez LR. Synlett 2007; 313
    • 9a Hungerschoff H. Ber. Dtsch. Chem. Ges. 1901; 34: 3130
    • 9b Hungerschoff H. Ber. Dtsch. Chem. Ges. 1903; 36: 3121
  • 10 Moghaddam FM, Boeini HZ. Synlett 2005; 1612
  • 11 Jordan AD, Luo C, Reitz AB. J. Org. Chem. 2003; 68: 8693
    • 12a Pierron P. Ann. Chim. Phys. 1908; 15: 269
    • 12b Hutchison KA, Sraganov G, Hicks R, Yudl H, Strassner T, Nendel M, Houk KN. J. Am. Chem. Soc. 1998; 120: 2989
  • 13 Dongho C, Jiyoung A, Kathlia AC, Hyunseok A, Hakjune R. Tetrahedron 2010; 66: 5583
  • 14 General Procedure A for the Synthesis of 6a–f To a cold suspension of 1,3-benzenediamine 4 (1.0 equiv, 18.5 mmol) and Et3N (5.1 mL, 37 mmol, 2.0 equiv) in dry CH2Cl2 (50 mL), a CH2Cl2 solution (10 mL) of benzoyl chloride 5ag (2.0 equiv) was added dropwise. The reaction mixture was stirred at 20 °C for 12 h and subsequently poured into 100 mL of H2O. The organic layer was separated, washed with an aq solution of NaHCO3 and with H2O (30 mL), and dried by Mg2SO4. The solution was filtered and concentrated under reduced pressure.
  • 15 N,N′-(1,3-Phenylene)bis(4-methylbenzamide) (6a) Starting with 4 (2.00 g, 18.5 mmol, 1.0 equiv), Et3N (5.1 mL, 37 mmol, 2.0 equiv), 4-methylbenzoyl chloride (4.8 mg, 37 mmol, 2.0 equiv), CH2Cl2 (25 mL), following General Procedure A, 6a was isolated (3.5 g, 55%); mp 257–259 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 3.37 (s, 6 H, CH3), 7.29–7.37 (m, 5 H), 7.51 (dd, J = 7.9, 1.8 Hz, 2 H), 7.92 (d, J = 8.2 Hz, 4 H), 8.34 (t, J = 3.2 Hz, 1 H), 10.2 (s, 2 H, NH). 13C NMR (75.5 MHz, DMSO-d 6): δ = 20.7 (2-CH3), 112.9, 115.9, 127.7, 128.4, 128.8 (CH), 132.0, 139.3, 141.5 (C), 165.3 (CO). GC–MS (EI, 70 eV): m/z (%) = 344 (67) [M+], 119 (99), 91 (44), 65 (13). HRMS (EI, 70 eV): m/z calcd for C22H20N2O2 [M]+: 344.1519; found: 344.1522.
  • 16 General Procedure B for the Synthesis of 7a–f The amide starting material (0.5 mmol) and Lawesson’s reagent (0.5 mmol) were refluxed in toluene (30 mL) for 1 h. Upon cooling, the solvent was evaporated using a rotary evaporator. The crude mixture was purified by column chromatography (silica gel, CH2Cl2–hexane = 1:1) to obtain the deep yellow colored compounds 7af in high yields (76–82%).
  • 17 N,N′-(1,3-Phenylene)bis(4-methylbenzothioamide) (7a) Starting with 6a (1.00 g, 1.0 equiv), Lawesson’s reagent (0.80 g, 1.0 equiv), toluene (25 mL), following General Procedure B, 7a was isolated (1.34 g, 92%). 1H NMR (300 MHz, DMSO-d 6): δ = 2.39 (s, 6 H, CH3), 7.29 (d, J = 8.1 Hz, 4 H), 7.49 (t, 3 H), 7.69 (d, J = 7.6 Hz, 4 H), 8.35 (s, 1 H), 11.74 (s, 2 H, NH). 13C NMR (75.5 MHz, DMSO-d 6): δ = 20.8 (2-CH3), 120.1, 122.2, 127.5, 128.3, 128.5 (CH), 139.4, 140.1, 140.9 (C), 197.4 (CS). GC–MS (EI, 70 eV): m/z (%) = 377 (76) [M+], 343 (67), 240 (43), 226 (93), 135 (70); HRMS (EI, 70 eV): m/z calcd for C22H20N2S2 [M]+: 377.1140; found: 377.1138.
  • 18 General Procedure C for the Oxidative Cyclization of Thiobenzanilides To a stirred solution of thiobenzanilide 7af (1.0 equiv) in CH2Cl2–CCl4 (1:1, 10 mL), N-benzyl-DABCO tribromide (2.0 equiv) was added. The reaction mixture was stirred for 30–90 min at 20 °C (TLC control). The solvent was removed under reduced pressure, and the residue was subjected to column chromatography (CH2Cl2–hexane, 1:1) to obtain products 8af.
  • 19 1,4-Bis[4-methylphenyl]benzo[1,2-d:4,5-d]bisdithiazole (8a) Starting with 7a (200 mg, 1.0 equiv), N-benzyl-DABCO tribromide (450 mg, 2.0 equiv), CH2Cl2–CCl4 (1:1, 10 mL), following General Procedure C, 8a was isolated as a yellow solid (138 mg, 70%); mp 221–223 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 2.38 (s, 6 H, CH3), 7.31 (d, J = 8.1 Hz, 4 H), 7.98 (d, J = 8.4 Hz, 5 H), 8.03 (s, 1 H). 13C NMR (75.5 MHz, DMSO-d 6): δ = 26.3 (CH3), 124.8, 125.1, 132.2, 134.8 (CH), 135.3, 141.4, 146.6, 158.6, 172.2 (C). GC–MS (EI, 70 eV): m/z (%) = 372 (100) [M+], 186 (16), 138 (43). HRMS (EI, 70 eV): m/z calcd for C22H16N2S2 [M]+: 372.0749; found: 372.0751.