Synthesis 2012; 44(22): 3432-3440
DOI: 10.1055/s-0032-1317499
feature article
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of (–)-Stemoamide

Xianwei Mi
a   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China   Email: rhong@sioc.ac.cn
b   State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Yan Wang
a   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China   Email: rhong@sioc.ac.cn
,
Lili Zhu
a   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China   Email: rhong@sioc.ac.cn
,
Renxiao Wang
b   State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Ran Hong*
a   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China   Email: rhong@sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 13 August 2012

Accepted after revision: 02 October 2012

Publication Date:
25 October 2012 (online)


Dedicated to Professor Guo-Qiang Lin on the occasion of his 70th birthday

Abstract

An enantioselective synthesis of (–)-stemoamide is presented. Noyori’s ruthenium complex catalyzed asymmetric transfer hydrogenation of an alkynone delivered the (S)-C8 stereogenic center in 97.7% ee. An iron(III) chloride promoted and bioinspired N-iminium ion cyclization afforded a 3:1 ratio of two diastereomers in favor of the cis-isomer. The diastereomeric ratio was enriched to 50:1 by a silver-catalyzed cycloisomerization. The subsequent dynamic ruthenium-catalyzed CO-insertion reaction secured an enantioselective total synthesis of (–)-stemoamide in 18% overall yield with high optical purity.

Supporting Information

 
  • References

  • 1 These authors (X. Mi and Y. Wang) contributed equally to this work.
  • 2 Nature Outlook: Traditional Asia Medicine: Nature 2011; 480: S81-S121
    • 3a Xu R.-S. Studies in Natural Products Chemistry . Vol. 21. Atta-ur-Rahman, Ed.; Elsevier Science; Amsterdam: 2000: 729-772
    • 3b Pilli RA, de Oliveira MC. F, Rosso GB. The Alkaloids . Vol. 62. Cordell GA. Academic Press; New York: 2005: 77-173
  • 4 Greger H. Planta Med. 2006; 72: 99

    • Reviews:
    • 5a Pilli RA, de Oliveira MC. F. Nat. Prod. Rep. 2000; 17: 117
    • 5b Alibés R, Figueredo M. Eur. J. Org. Chem. 2009; 2421
    • 5c Pilli RA, Rosso GB, de Oliveira MC. F. Nat. Prod. Rep. 2010; 27: 1908
  • 6 Lin W.-H, Ye Y, Xu R.-S. J. Nat. Prod. 1992; 55: 571

    • Total and formal synthesis of (–)-stemoamide:
    • 7a Williams DR, Reddy JP, Amato GS. Tetrahedron Lett. 1994; 35: 6417
    • 7b Kinoshita A, Mori M. J. Org. Chem. 1996; 61: 8356
    • 7c Jacobi PA, Lee K. J. Am. Chem. Soc. 2000; 122: 4295
    • 7d Gurjar MK, Reddy DS. Tetrahedron Lett. 2002; 43: 295
    • 7e Sibi MP, Subramanian T. Synlett 2004; 1211
    • 7f Olivo HF, Tovar-Miranda R, Barragán E. J. Org. Chem. 2006; 71: 3287
    • 7g Torssell S, Wanngren E, Somfai P. J. Org. Chem. 2007; 72: 4246
    • 7h Honda T, Matsukawa T, Takahashi K. Org. Biomol. Chem. 2011; 9: 673
    • 7i Chavan SP, Harale KR, Puranic VG, Gawade RL. Tetrahedron Lett. 2012; 53: 2647

      Total synthesis of (±)-stemoamide:
    • 8a Jacobi PA, Lee K. J. Am. Chem. Soc. 1997; 119: 3409
    • 8b Bates RW, Sridhar S. Synlett 2009; 1979
    • 8c Wang Y, Zhu L, Zhang Y, Hong R. Angew. Chem. Int. Ed. 2011; 50: 2787
  • 10 Frankowski KJ, Setola V, Evans JM, Neuenswander B, Roth BL, Aubé J. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6727

    • Recent synthetic studies on stemona alkaloids, see:
    • 11a Tuo S.-C, Ye J.-L, Wang A.-E, Huang S.-Y, Huang P.-Q. Org. Lett. 2011; 13: 5270
    • 11b Hoye AT, Wipf P. Org. Lett. 2011; 13: 2634
    • 11c Chen Z.-H, Tu Y.-Q, Zhang S.-Y, Zhang F.-M. Org. Lett. 2011; 13: 724
    • 11d Chen Z.-H, Zhang Y.-Q, Chen Z.-M, Tu Y.-Q, Zhang F.-M. Chem. Commun. 2011; 47: 1836
    • 11e Chen Z.-H, Tu Y.-Q, Zhang S.-Y, Zhang F.-M. Scientia Sinica Chim. 2011; 41: 474
    • 11f Chen Z.-H, Chen Z.-M, Zhang Y.-Q, Tu Y.-Q, Zhang F.-M. J. Org. Chem. 2011; 76: 10173
    • 11g Swamy NK, Pyne SG. Heterocycles 2012; 84: 473
    • 11h Chen JB, Chen JC, Xie Y, Zhang HB. Angew. Chem. Int. Ed. 2012; 51: 1024
    • 11i Bardají N, Sánchez-Izquierdo F, Alibés R, Font J, Busqué F, Figueredo M. Org. Lett. 2012; 14: 4854
    • 11j Liu X.-K, Ye J.-L, Ruan Y.-P, Li Y.-X, Huang P.-Q. J. Org. Chem. 2012; 77 in press; doi: 10.1021/jo3014484
  • 12 Seger C, Mereiter K, Kaltenegger E, Pacher T, Greger H, Hofer O. Chemistry & Biodiversity 2004; 1: 265
  • 13 Greger H, Schinnerl J, Vajrodaya S, Brecker L, Hofer O. J. Nat. Prod. 2009; 72: 1708
    • 15a Hiemstra H, Speckamp WN. Tetrahedron Lett. 1983; 24: 1407
    • 15b Hiemstra H, Sno MH. A. M, Vijn RJ, Speckamp WN. J. Org. Chem. 1985; 50: 4014
    • 15c See also a comprehensive review: Hiemstra H, Speckamp WN. Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I. Pergamon; Oxford: 1991: 1047
    • 15d Speckamp WN, Moolenaar MJ. Tetrahedron 2000; 56: 3817
    • 15e Maryanoff BE, Zhang H.-C, Cohen JH, Turchi IJ, Maryanoff CA. Chem. Rev. 2004; 104: 1431
    • 15f Royer J, Bonin M, Micouin L. Chem. Rev. 2004; 104: 2311
  • 16 Frantz DE, Faessler R, Carreira EM. J. Am. Chem. Soc. 2000; 122: 1806
  • 17 Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986
  • 18 Helal CJ, Magriotis PA, Corey EJ. J. Am. Chem. Soc. 1996; 118: 10938

    • Asymmetric transfer hydrogenation (ATH):
    • 19a Matsumura K, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1997; 119: 8738
    • 19b Haack K.-J, Hashiuchi S, Fujii A, Ikariya T, Noyori R. Angew. Chem. Int. Ed. 1997; 36: 285
    • 19c Noyori R, Yamakawa M, Hashiguchi S. J. Org. Chem. 2001; 66: 7931
    • 19d The absolute configuration was determined as S by Mosher’s method, see the Supporting Information for details
  • 20 Frank KE, Aubé J. J. Org. Chem. 2000; 65: 655
    • 21a Li C, Li X, Hong R. Org. Lett. 2009; 11: 4036
    • 21b Li X, Li C, Zhang W, Lu X, Han S, Hong R. Org. Lett. 2010; 12: 1696
    • 22a Leandri G, Monti H, Bertrand M. Tetrahedron 1974; 30: 289
    • 22b Olsson LI, Claesson A. Synthesis 1979; 743
    • 22c Marshall JA, Wang X. J. Org. Chem. 1990; 55: 2995
    • 22d Marshall JA, Pinney KG. J. Org. Chem. 1993; 58: 7180
    • 22e Marshall JA, Yu RH, Perkins JF. J. Org. Chem. 1995; 60: 5550
  • 23 After the cycloisomerization, 13a, cis-14a, and trans-14b were determined as a ratio of 58:16:25, and 13a could be isolated in 53% yield. Its spectra are identical with our previous reported data as indicated in ref. 8c.
    • 24a Yoneda E, Kaneko T, Zhang S.-W, Onitsuka K, Takahashi S. Org. Lett. 2000; 2: 441
    • 24b The preliminary mechanistic studies were reported, see: Yoneda E, Zhang S.-W, Zhou D.-Y, Onitsuka K, Takahashi S. J. Org. Chem. 2003; 68: 8571
    • 24c To interpret the unexpected epimerization associated with Ru-catalyzed carbonylation in our synthesis, an alternative mechanism was proposed, see ref. 8c.
  • 25 Correct nomenclature for cyclized products 14 and 15. A consistent numbering scheme is used for convenience in Figure 1, Scheme 5, and the text.