Cu-Catalyzed Coupling of Secondary Alkyl Electrophiles and Alkyl Grignards

Significance: A novel method for the cross-coupling of nonactivated secondary alkyl halides and pseudo halides with secondary Grignard reagents with a copper catalyst is described. The addition of TMEDA and LiOMe was found to be crucial for the success of the reaction. A broad range of functional groups including esters, amides and aryl halides, is tolerated under the reaction conditions.

Comment: Interestingly, the reaction proceeds according to a classical S_N^2 mechanism with inversion of configuration. Therefore, easily accessible chiral secondary alcohols can be converted into chiral tosylates and alkylated with a copper-catalyst with either primary or secondary alkyl Grignard reagents to furnish the products in high enantiomeric excess.

\[
\begin{align*}
\text{Alk}^1 \text{X} + \text{Alk}^3 \text{MgBr} & \rightarrow \text{Cu(I)} (10 \text{ mol\%}) \\
& \text{TMEDA} (20 \text{ mol\%}) \\
& \text{LiOMe (1 equiv)} \\
& 0 \degree C, 24 \text{ h} \\
\end{align*}
\]

\[
\begin{align*}
\text{Alk}^1 \text{Alk}^2 & \rightarrow \text{Alk}^3 \text{Alk}^4 \\
\text{X} = \text{OTs, Cl, Br, I} \\
\text{Alk}^1 = \text{various substituted alkyl groups} \\
\text{Alk}^2 = \text{linear and branched aliphatic chains} \\
\text{Alk}^3/4 = \text{cyclic and linear aliphatics} \\
\end{align*}
\]

Selected examples:

- **81% yield**
 $X = \text{OTs}$

- **74% yield**
 $X = \text{Br}$

- **64% yield**
 $X = \text{Br}$

- **89% yield**
 $X = \text{Br}$

- **70% yield**
 99% ee
 $X = \text{OTs}$

- **67% yield**
 98% ee
 $X = \text{OTs}$