Synlett 2012; 23(17): 2491-2496
DOI: 10.1055/s-0032-1317191
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Oxidative Cyanation of Aryl Halides with Nitriles Involving Carbon–Carbon Cleavage

Ren-Jie Song
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Ji-Cheng Wu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
b   Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, P. R. of China, Fax: +86(731)88713642   Email: jhli@hnu.edu.cn
,
Yu Liu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Guo-Bo Deng
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Cui-Yan Wu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
b   Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, P. R. of China, Fax: +86(731)88713642   Email: jhli@hnu.edu.cn
,
Wen-Ting Wei
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
,
Jin-Heng Li*
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 23 July 2012

Accepted after revision: 07 August 2012

Publication Date:
21 September 2012 (online)


Abstract

A novel, general route for the synthesis of aromatic nitriles is presented that proceeds through Cu(OAc)2-catalyzed oxidative cyanation of aryl halides using commercially available nitriles as the cyanide sources and Ag2O/air as the oxidizing agent. It is noteworthy that this work provides a new example of using acetonitrile as the cyanide source for aromatic nitrile synthesis through a Cu-catalyzed oxidative C–C bond cleavage and cyanation process.

Supporting Information

 
  • References and Notes


    • For selected recent reviews, see:
    • 1a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 1b Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 1c Jones LH, Summerhill NW, Swain NA, Mills JE. Med. Chem. Commun. 2010; 1: 309
    • 1d Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
    • 1e Zapf A, Beller M. Chem. Commun. 2005; 431
    • 1f Sundermeier M, Zapf A, Beller M. Eur. J. Inorg. Chem. 2003; 3513
    • 2a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. VCH; New York: 1989
    • 2b Rappoport Z. The Chemistry of the Cyano Group . Interscience Publishers; London: 1970
  • 3 Takagi K, Okamoto T, Sakakibara Y, Oka S. Chem. Lett. 1973; 471
    • 4a Cassar L. J. Organomet. Chem. 1973; 54: C57
    • 4b Cassar L, Ferrara S, Foa M. Homogeneous Catalysis II . Gould RF. American Chemical Society; Washington: 1974. Chap. 17, 252-273

      For selected reviews, see:
    • 5a Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
    • 5b Grushin VV, Alper H. Chem. Rev. 1994; 94: 1047
    • 5c Ellis GA, Romney-Alexander TM. Chem. Rev. 1987; 87: 779

      For selected papers, see:
    • 6a For KCN, see: Li C, Ju Y, Liu F. Org. Lett. 2009; 11: 3582
    • 6b Arai S, Sato T, Nishida A. Adv. Synth. Catal. 2009; 351: 1897
    • 6c Yang C, Williams JM. Org. Lett. 2004; 6: 2837
    • 6d For NaCN, see: Zhang Z, Wang Z, Zhang R, Ding K. Angew. Chem. Int. Ed. 2010; 49: 6746
    • 6e Do H.-Q, Daugulis O. Org. Lett. 2010; 12: 2517
    • 6f Murahashi S.-I, Nakae T, Terai H, Komiya N. J. Am. Chem. Soc. 2008; 130: 11005
    • 6g Erhardt S, Grushin VV, Kilpatrick AH, Macgregor SA, Marshall WJ, Roe DC. J. Am. Chem. Soc. 2008; 130: 4828
    • 6h Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
    • 6i Cristau H.-J, Ouali A, Spindler J.-F, Taillefer M. Chem. Eur. J. 2005; 11: 2483
    • 6j For CuCN, see: Reddy BV. S, Begum Z, Reddy YJ, Yadav JS. Tetrahedron Lett. 2010; 51: 3334
    • 6k For Zn(CN)2, see: Liskey CW, Liao X, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 11389
    • 6l Shevlin M. Tetrahedron Lett. 2010; 51: 4833
    • 6m Buono FG, Chidambaram R, Mueller RH, Waltermire RE. Org. Lett. 2008; 10: 5325
    • 6n Littke A, Soumeillant M, Kaltenbach RF. III, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
    • 6o For [K4Fe(CN)6], see: Yeung PY, So CM, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2010; 49: 8918
    • 6p DeBlase C, Leadbeater NE. Tetrahedron 2010; 66: 1098
    • 6q Yan G, Kuang C, Zhang Y, Wang J. Org. Lett. 2010; 12: 1052
    • 6r Zhao Z, Li Z. Eur. J. Org. Chem. 2010; 5460
    • 6s Velmathi S, Leadbeater NE. Tetrahedron Lett. 2008; 49: 4693
    • 6t For TMSCN, see: Arai S, Koike Y, Nishida A. Adv. Synth. Catal. 2010; 352: 893
    • 6u Arai S, Sato T, Koike Y, Hayashi M, Nishida A. Angew. Chem. Int. Ed. 2009; 48: 4528
    • 6v Han W, Ofial AR. Chem. Commun. 2009; 5024
    • 6w Chen G, Wang Z, Wu J, Ding K. Org. Lett. 2008; 10: 4573
    • 6x For MeCN, see: Guo F.-H, Chu C.-I, Cheng C.-H. Organometallics 1998; 17: 1025
    • 6y For nitriles, see: Garcia JJ, Jones WD. Organometallics 2000; 19: 5544
    • 6z For other CN sources, see: Garcia JJ, Brunkan NM, Jones WD. J. Am. Chem. Soc. 2002; 124: 9547
    • 6aa Zhang G, Ren X, Chen J, Hu M, Cheng J. Org. Lett. 2011; 13: 5004

      For a representative paper on the use of Me2C(OH)CN as the cyanide source, see:
    • 7a Schareina T, Zapf A, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2011; 353: 777 ; and references cited therein
    • 7b Park EJ, Lee S, Chang S. J. Org. Chem. 2010; 75: 2760

      For selected papers on the cyanation of arene C–H bonds through C–H activation, see:
    • 8a Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 8b Jia X, Yang D, Zhang S, Cheng J. Org. Lett. 2009; 11: 4716
    • 8c Jia X, Yang D, Wang W, Luo F, Cheng J. J. Org. Chem. 2009; 74: 9470
    • 8d Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 8e Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
    • 8f Kin J, Choi J, Shin K, Chang S. J. Am. Chem. Soc. 2012; 134: 2528

      For representative papers on the use of RCN as cyanide sources for addition with alkynes using Ni/AlMe3, see:
    • 9a Nakao Y, Yada A, Hiyama T. J. Am. Chem. Soc. 2010; 132: 10024
    • 9b Yada A, Yukawa T, Idei H, Nakao Y, Hiyama T. Bull. Chem. Soc. Jpn. 2010; 83: 619
    • 9c Yada A, Yukawa T, Nakao Y, Hiyama T. Chem. Commun. 2009; 3931
    • 9d Nakao Y, Yada A, Ebata S, Hiyama T. J. Am. Chem. Soc. 2007; 129: 2428
  • 10 See Figure S1 and Scheme S1 in the Supporting Information for detailed data.
  • 11 Copper-Catalyzed Oxidative Cyanation of Aryl Halides with Nitriles; Typical Procedure: To a Schlenk tube were added aryl halide 1 (0.3 mmol), Cu(OAc)2 (20 mol%), triphenylphosphine oxide (40 mol%), Ag2O (1 equiv) and MeCN (1 mL) at room temperature. Then the tube was stirred at 125 °C (thermometer temperature) for the indicated time until complete consumption of starting material was observed (reaction monitored by TLC and GC-MS analysis). Upon completion, the reaction mixture was diluted in diethyl ether and washed with brine. The aqueous phase was re-extracted with diethyl ether. The combined organic extracts were dried over Na2SO4 and concentrated under vacuum, and the resulting residue was purified by silica gel column chromatography (hexane–ethyl acetate) to afford the product. 4-Methoxybenzonitrile (3): Yield: 36.3 mg (91%); white solid. 1H NMR (500 MHz, DMSO-d 6): δ = 7.76–7.74 (m, 2 H), 7.10–7.08 (m, 2 H), 3.83 (s, 3 H). 13C NMR (125 MHz, DMSO-d 6): δ = 162.2, 133.6, 118.6, 114.6, 102.3, 55.1. MS (EI, 70 eV): m/z (%) = 133 (100) [M]+, 102 (43). See also: Zhou W., Xu J.-J., Zhang L.-R., Jiao. N.; Org. Lett.; 2010, 12: 2888.
  • 12 Substrates with acidic groups, including OH groups, cannot be used for transition-metal-catalyzed cyanation with an ionic alkali metal cyanide because they can react with the cyanide salt to release HCN leading to instant deactivation of the catalyst, see refs 2,5,6
    • 13a For representative papers on the formation of the Cu(III) intermediate in the first oxidative addition step with the aid of oxidizing reagents, see: Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 13b Collman JP, Zhong M. Org. Lett. 2000; 2: 1233
    • 13c Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
    • 13d Barton DH. R, Finet JP, Khamsi J. Tetrahedron Lett. 1987; 28: 887
    • 13e Paine AJ. J. Am. Chem. Soc. 1987; 109: 1496
    • 13f Litvak VV, Shein SM. Zh. Org. Khim. 1975; 11: 92
  • 14 During the cyanation of 1-iodo-4-methoxybenzene (1a) with 2-phenylacetonitrile (2b), benzoic acid was observed by GC-MS analysis (about 10% GC yield). Under the present optimal conditions, benzaldehyde can be readily oxidized to benzoic acid.