Synthesis 2012; 44(20): 3165-3170
DOI: 10.1055/s-0032-1317134
paper
© Georg Thieme Verlag Stuttgart · New York

Highly Improved Copper-Mediated Michael Addition of Ethyl Bromodifluoroacetate in the Presence of Protic Additive

Bong Chan Kim
a   Process Research and Development Division, LG Life Sciences, Ltd, R & D Park, 104-1 Moonji-dong, Yusung-gu, Daejeon 305-380, Korea
b   Department of Chemistry, Sogang University, Seoul 121-742, Korea, Fax: +82(42)8665754   Email: hbonglee@lgls.com
,
Aeri Park
a   Process Research and Development Division, LG Life Sciences, Ltd, R & D Park, 104-1 Moonji-dong, Yusung-gu, Daejeon 305-380, Korea
,
Ji Eun An
a   Process Research and Development Division, LG Life Sciences, Ltd, R & D Park, 104-1 Moonji-dong, Yusung-gu, Daejeon 305-380, Korea
,
Won Koo Lee
b   Department of Chemistry, Sogang University, Seoul 121-742, Korea, Fax: +82(42)8665754   Email: hbonglee@lgls.com
,
Hee Bong Lee*
a   Process Research and Development Division, LG Life Sciences, Ltd, R & D Park, 104-1 Moonji-dong, Yusung-gu, Daejeon 305-380, Korea
,
Hyunik Shin
a   Process Research and Development Division, LG Life Sciences, Ltd, R & D Park, 104-1 Moonji-dong, Yusung-gu, Daejeon 305-380, Korea
› Author Affiliations
Further Information

Publication History

Received: 07 June 2012

Accepted after revision: 26 July 2012

Publication Date:
03 September 2012 (online)


Abstract

Copper-mediated Michael addition of ethyl bromodi­fluoroacetate to Michael acceptors is accompanied by the formation of a substantial amount of byproducts. Elucidation of their structure hinted the cause of their formation, from which we discovered a highly improved and robust protocol by treatment with protic additives such as H2O and AcOH. This modification led to significant increase of yield with concomitant decreased use of reagent.

Supporting Information

 
  • References

  • 1 O’Hagan D, Schaffrath C, Cobb SL, Hamilton JT. G, Murphy CD. Nature 2002; 416: 279
    • 2a Bölm H.-J, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
    • 2b Thayer AM. Chem. Eng. News 2006; 84 (23): 15
    • 2c Hagmann WK. J. Med. Chem. 2008; 51: 4358
    • 3a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 3b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 4a Shoulders MD, Hodges JA, Raines RT. J. Am. Chem. Soc. 2006; 128: 8112
    • 4b Nicolleti M, O’Hagan D, Slawin AM. Z. J. Am. Chem. Soc. 2005; 127: 482
    • 4c Hunter L, O’Hagan D, Slawin AM. Z. J. Am. Chem. Soc. 2006; 128: 16422
    • 5a Tozer MJ, Herpin TF. Tetrahedron 1996; 52: 8619
    • 5b Qiu X.-L, Xu X.-H, Qing F.-L. Tetrahedron 2010; 66: 789
  • 6 Li Y, Zhou J, Burns D, Yao W. PCT Int. Appl WO 2005037826 A1 20050428, 2005 ; Chem. Abstr. 2005, 142, 430307
  • 7 Nagase T, Sato N, Kanatani A, Tokita S. US Patent 2005182045 A1 20050818, 2005 ; Chem. Abstr. 2006, 143, 211923
  • 8 Castro Pineiro JL, Dinnell K, Elliot JM, Hollingworth GJ, Shaw DE, Swain CJ. PCT Int. Appl WO 2001087838 A1, 2001 ; Chem. Abstr. 2001, 136, 5907
    • 9a Golubev AS, Schedel H, Radics G, Fioroni M, Thust S, Burger K. Tetrahedron Lett. 2004; 45: 1445
    • 9b Banerjee A, Schepmann D, Wünsch B. Bioorg. Med. Chem. 2010; 18: 4095
    • 10a Huang H, Hutta DA, Rinker JM, Hu H, Parsons WH, Schubert C, DesJarlais RL, Crysler CS, Chaikin MA, Donatelli RR, Chen Y, Cheng D, Zhou Z, Yurkow E, Manthey CL, Player MR. J. Med. Chem. 2009; 52: 1081
    • 10b Stanton MG, Hubbs J, Sloman D, Hamblett C, Andrade P, Angagaw M, Bia G, Black RM, Crispino J, Cruz JC, Fan E, Farris G, Hughes BL, Kenific CM, Middleton RE, Nikov G, Sajonz P, Shah S, Shomer N, Szewczak AA, Tanga F, Tudge M, Shearman M, Benito MunozB. Bioorg. Med. Chem. Lett. 2010; 20: 755
  • 11 Surmont R, Verniest G, De Weweire A, Thuring JW, Macdonald G, Deroose F, De Kimpe N. Synlett 2009; 1933
    • 12a Cochran J. Chem. Eng. News 1979; 57 (12): 74
    • 12b Middleton WJ. Chem. Eng. News 1979; 57 (21): 43
    • 12c Messina PA, Mange KC, Middleton WJ. J. Fluorine Chem. 1989; 42: 137
    • 12d Negi DS, Koppling L, Lovis K, Abdallah R, Geisler J, Budde U. Org. Process Res. Dev. 2008; 12: 345
  • 13 Beeler AB, Gadepalli RS. V. S, Steyn S, Castagnoli N, Rimoldi JM. Bioorg. Med. Chem. 2003; 11: 5229
  • 14 Surmont R, Verniest G, Thuring JW, Macdonald G, Deroose F, De Kimpe N. J. Org. Chem. 2010; 75: 929
  • 15 Lee C.-S, Koh JS, Koo KD, Kim GT, Kim K.-H, Hong SY, Kim S, Kim M.-J, Yim HJ, Lim D, Kim HJ, Han HO, Bu SC, Kwon OH, Kim SH, Hur G.-C, Kim JY, Yeom ZH, Yeo D.-J. PCT Int. Appl WO 2006104356 A1, 2006 ; Chem. Abstr. 2006, 145, 397795
    • 16a Sato K, Tamura M, Tamoto K, Ando A, Omote M, Kumadaki I. Chem Pharm. Bull. 2000; 48: 1023
    • 16b Sato K, Nakazato S, Enko H, Tsujita H, Fujita K, Yamamoto T, Omote M, Ando A, Kumadaki I. J. Fluorine Chem. 2003; 121: 105
    • 16c Sato K, Omote M, Ando A, Kumadaki I. J. Fluorine Chem. 2004; 125: 509
  • 17 The ligands shown in Figure 2 were examined. In the case of Et3N, no desired adduct of 3a was obtained
    • 18a Nakamura E, Matsuzawa S, Horiguchi Y, Kuwajima I. Tetrahedron Lett. 1986; 27:  4029
    • 18b Bertz SH, Miao G, Rossiter BE, Snyder JP. J. Am. Chem. Soc. 1995; 117: 11023
    • 18c Lipshutz BH, Aue DH, James B. Tetrahedron Lett. 1996; 37: 8471
    • 18d Frantz DE, Singleton DA. J. Am. Chem. Soc. 2000; 122: 3288
  • 19 Ethyl bromoacetate and ethyl bromofluoroacetate as Michael donors were subjected to the optimized Michael addition to provide no desired product and ca. 15% adduct, respectively