Synthesis 2012; 44(24): 3811-3814
DOI: 10.1055/s-0032-1316813
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Indoles by Copper-Catalyzed Heteroannulation of o-Aminophenylboronic Acid Pinacol Esters with β-Keto Esters

Ala Bunescu
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland   Fax: +41(21)6939740   Email: jieping.zhu@epfl.ch
,
Qian Wang
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland   Fax: +41(21)6939740   Email: jieping.zhu@epfl.ch
,
Jieping Zhu*
Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne, Switzerland   Fax: +41(21)6939740   Email: jieping.zhu@epfl.ch
› Author Affiliations
Further Information

Publication History

Received: 03 October 2012

Accepted after revision: 30 October 2012

Publication Date:
15 November 2012 (online)


Abstract

Copper-catalyzed coupling of o-aminophenylboronic acid pinacol esters with β-keto esters afforded, under mild base-free oxidative conditions, 2,3-disubstituted indoles featuring a key Chan–Lam-type carbon–carbon bond-forming reaction.

Supporting Information

 
  • References


    • For recent reviews on indole-containing natural products, see:
    • 1a Somei M, Yamada F. Nat. Prod. Rep. 2004; 21: 278
    • 1b Somei M, Yamada F. Nat. Prod. Rep. 2005; 22: 73
    • 1c Ishikura M, Yamada K, Abe T. Nat. Prod. Rep. 2010; 27: 1630

      For reviews about indole synthesis, see:
    • 2a Gribble GW. Contemp. Org. Synth. 1994; 1: 145
    • 2b Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 2c Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045
    • 2d Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215 ; DOI: 10.1021/cr100403z
    • 2e Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
  • 3 Iida H, Yuasa Y, Kibayashi C. J. Org. Chem. 1980; 45: 2938
    • 4a Michael JP, Chang S.-F, Wilson C. Tetrahedron Lett. 1993; 34: 8365
    • 4b Edmondson SD, Mastracchio A, Parmee ER. Org. Lett. 2000; 2: 1109
    • 4c Latham JE, Stanforth SP. J. Chem. Soc., Perkin Trans. 1 1997; 2059
    • 4d Chen C.-y, Lieberman DR, Larsen RD, Verhoeven TR, Reider PJ. J. Org. Chem. 1997; 62: 2676
    • 4e Nazaré M, Schneider C, Lindenschmidt A, Will DW. Angew. Chem. Int. Ed. 2004; 43: 4526
    • 4f Lachance N, April M, Joly M.-A. Synthesis 2005; 2571
    • 5a Jia Y, Zhu J. Synlett 2005; 2469
    • 5b Jia Y, Zhu J. J. Org. Chem. 2006; 71: 7826
    • 5c Jia Y, Bois-Choussy M, Zhu J. Angew. Chem. Int. Ed. 2008; 47: 4167
    • 5d Wang Z, Bois-Choussy M, Jia Y, Zhu J. Angew. Chem. Int. Ed. 2010; 49: 2018
    • 5e Gerfaud T, Xie C, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2011; 50: 3954
    • 6a Baran PS, Guerrero CA, Ambhaikar NB, Hafensteiner BD. Angew. Chem. Int. Ed. 2005; 44: 606
    • 6b Baran PS, Hafensteiner BD, Ambhaikar NB, Guerrero CA, Gallagher JD. J. Am. Chem. Soc. 2006; 128: 8678
    • 7a Xu Z, Hu W, Zhang F, Li Q, Lü Z, Zhang L, Jia Y. Synthesis 2008; 3981
    • 7b Hu C, Qin H, Cui Y, Jia Y. Tetrahedron 2009; 65: 9075
    • 7c Yu S.-M, Hong W.-H, Wu Y, Zhong C.-L, Yao Z.-J. Org. Lett. 2010; 12: 1124
    • 7d Wu W, Li Z, Zhou G, Jiang S. Tetrahedron Lett. 2011; 52: 2488
    • 7e Liu Y, Zhang L, Jia Y. Tetrahedron Lett. 2012; 53: 684
    • 8a Würtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
    • 8b Shi Z, Zhang C, Li S, Pan D, Ding S, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
    • 8c Wei Y, Deb I, Yoshikai N. J. Am. Chem. Soc. 2012; 134: 9098
    • 9a Osuka A, Mori Y, Suzuki H. Chem. Lett. 1982; 2031
    • 9b Okuro K, Furuune M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 7606
    • 9c Chen Y, Xie X, Ma D. J. Org. Chem. 2007; 72: 9329
    • 9d Chen Y, Wang Y, Sun Z, Ma D. Org. Lett. 2008; 10: 625
    • 9e Tanimori S, Ura H, Kirihata M. Eur. J. Org. Chem. 2007; 3977
    • 9f Bernini R, Fabrizi G, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
    • 9g Gao D, Parvez M, Back TG. Chem.–Eur. J. 2010; 16: 14281
    • 9h Ali MA, Punniyamurthy T. Synlett 2011; 623
    • 9i Kobayashi K, Komatsu T, Yokoi Y, Konishi H. Synthesis 2011; 764
  • 10 See, for example, ref. 5e.
    • 11a Chan DM. T, Monaco KL, Wang R.-P, Winters MP. Tetrahedron Lett. 1998; 39: 2933
    • 11b Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
    • 11c Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941

      For reviews of the Chan–Lam reaction, see:
    • 12a Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 12b Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 13a McKinley NF, O’Shea DF. J. Org. Chem. 2004; 69: 5087
    • 13b Bolshan Y, Batey RA. Angew. Chem. Int. Ed. 2008; 47: 2109
    • 13c Shade RE, Hyde AM, Olsen J.-C, Merlic CA. J. Am. Chem. Soc. 2010; 132: 1202
    • 14a Bénard S, Neuville L, Zhu J. J. Org. Chem. 2008; 73: 6441
    • 14b Tsuritani T, Strotman NA, Yamamoto Y, Kawasaki M, Yasuda N, Mase T. Org. Lett. 2008; 10: 1653

      For formation of aryl–CF3 and alkyne–CF3 bonds, see:
    • 15a Chu L, Qing F.-L. Org. Lett. 2010; 12: 5060
    • 15b Senecal TD, Parsons AT, Buchwald SL. J. Org. Chem. 2011; 76: 1174
    • 15c Jiang X, Chu L, Qing F.-L. J. Org. Chem. 2012; 77: 1251

    • For formation of aryl–CN bonds, see:
    • 15d Zhang G, Zhang L, Hu M, Cheng J. Adv. Synth. Catal. 2011; 353: 291

    • For oxidative coupling of arylboronic acids with heteroarenes, see:
    • 15e Yang F, Xu Z, Wang Z, Yu Z, Wang R. Chem.–Eur. J. 2011; 17: 6321

      β-Keto esters as copper ligands, see:
    • 16a Lv X, Bao W. J. Org. Chem. 2007; 72: 3863

    • β-Diketones as copper ligands, see:
    • 16b Shafir A, Buchwald SL. J. Am. Chem. Soc. 2006; 128: 8742
    • 16c Monnier F, Turtaut F, Duroure L, Taillefer M. Org. Lett. 2008; 10: 3203
    • 16d Racine E, Monnier F, Vors J.-P, Taillefer M. Org. Lett. 2011; 13: 2818

    • For the reactivity and mechanism study of copper(I) enolate complex, see:
    • 16e Huang Z, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 1028
  • 17 Gunji T, Unno M, Arimitsu K, Yoshimoto A, Abe Y, Long N, Bubendorfer A. Bull. Chem. Soc. Jpn. 2005; 78: 187
    • 18a Hevia E, Mulvey RE. Angew. Chem. Int. Ed. 2011; 50: 6448
    • 18b Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
  • 19 CuCl2 or CuCl were also capable of catalyzing the reaction, but low yields of indoles were obtained.
    • 20a Funahashi S, Nishimoto T, Banerjee P, Sawada K, Tanaka M. Bull. Chem. Soc. Jpn. 1980; 53: 1555
    • 20b Imamura S.-i, Otani T, Teranishi H. Bull. Chem. Soc. Jpn. 1975; 48: 1245
    • 21a Huffman LM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196
    • 21b King AE, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2009; 131: 5044
    • 22a Yao B, Wang D.-X, Huang Z.-T, Wang M.-X. Chem. Commun. 2009; 2899
    • 22b Yao B, Wang Z.-L, Zhang H, Wang D.-X, Zhao L, Wang M.-X. J. Org. Chem. 2012; 77: 3336
  • 23 This control experiment was performed at 50 °C. Phenyl-acetamide, o-chlorophenylacetamide and N,N-dimethyl-aniline were the major products based on the 1H NMR and MS analysis of the crude reaction mixture.
  • 24 Bunce RA, Randall MH, Applegate KG. Org. Prep. Proced. Int. 2002; 34: 493
  • 25 Kim JH, Lee S.-G. Org. Lett. 2011; 13: 1350