Synthesis 2012; 44(18): 2889-2894
DOI: 10.1055/s-0032-1316734
paper
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Syntheses of All Stereoisomers of 3-Hydroxyproline; A Constituent of Several Bioactive Compounds

Togapur Pavan Kumar
Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad – 500007, India, Fax: +91(40)27160512   Email: srivaric@iict.res.in
,
Srivari Chandrasekhar*
Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad – 500007, India, Fax: +91(40)27160512   Email: srivaric@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 28 April 2012

Accepted after revision: 04 July 2012

Publication Date:
16 August 2012 (online)


Abstract

Synthesis of an unusual β-hydroxy-α-amino acid, 3-hydroxyproline, and its derivatives have been achieved enantioselectively by employing Sharpless asymmetric epoxidation and reductive cyclization as the key steps.

Supporting Information

 
  • References and Notes

    • 1a Mauger AB, Witkop B. Chem. Rev. 1966; 66: 47
    • 1b Mauger AB. J. Nat. Prod. 1996; 59: 1205
    • 1c Wolff JS, Ogle JD, Logan MA. J. Biol. Chem. 1966; 241: 1300
    • 1d Tamazawa K, Arima H, Kojima T, Isomura Y, Okada M, Fujita S, Furuya T, Takenaka T, Inagaki O, Terai M. J. Med. Chem. 1986; 29: 2504
    • 1e Graul A, Castaner J. Drugs Future 1996; 21: 1105
    • 1f Nagahara T, Yokoyama Y, Inamura K, Katakura S, Komoriya S, Yamaguchi H, Hara T, Iwamoto M. J. Med. Chem. 1994; 37: 1200
    • 1g Miyadera T, Sugimura Y, Hashimoto T, Tanaka T, Iino K, Shibata T, Sugawara S. J. Antibiot. 1983; 36: 1034
    • 1h Fromtling RA, Castaner J. Drugs Future 1995; 20: 1103
    • 2a Misiek M, Fardig OB, Gourevitch A, Johnson DL, Hooper IR, Lein L. Antibiot. Annu. 1958; 852
    • 2b Sheehan JC, Mania D, Nakamura S, Stock JA, Maeda K. J. Am. Chem. Soc. 1968; 90: 462
    • 3a Hashizume H, Igarashi M, Hattori S, Hori M, Hamada M, Takeuchi T. J. Antibiot. 2001; 54: 1054
    • 3b Hashizume H, Hirosawa S, Sawa R, Muraoka Y, Ikeda D, Naganawa H, Igarashi M. J. Antibiot. 2004; 57: 52
    • 3c Hashizume H, Hattori S, Higarashi M, Akamatsu Y. J. Antibiot. 2004; 57: 394
    • 4a Shoji J, Hinoo H, Katayama T, Matsumoto K, Tanimoto T, Hattori T, Higashiyama I, Miwa H, Motokawa K, Yoshida T. J. Antibiot. 1992; 45: 817
    • 4b Shoji J, Hinoo H, Katayama T, Nakagawa Y, Ikenishi Y, Iwatani K, Yoshida T. J. Antibiot. 1992; 45: 824
    • 5a Konishi M, Sugawara K, Hanada M, Tomita K, Tomatsu K, Miyaki T, Kawaguchi H, Buck RE, More C, Rossomano VZ. J. Antibiot. 1984; 37: 949
    • 5b Sugawara K, Numata K, Konishi M, Kawaguchi H. J. Antibiot. 1984; 37: 958
    • 5c Maki H, Miura K, Yamano Y. Antimicrob. Agents Chemother. 2001; 45: 1823
  • 6 Nakada N, Shimada H, Hirata T, Aoki Y, Kamiyama T, Watanabe J, Arisawa M. Antimicrob. Agents Chemother. 1993; 37: 2656
    • 7a Lin H, Chen CH, You BJ, Liu KC. S. C, Lee SS. J. Nat. Prod. 2000; 63: 1338
    • 7b Morel AF, Araujo CA, Silva UF, Hoelzel SC. S. M, Zachia R, Bastos NR. Phytochemistry 2002; 61: 561
    • 7c Lin H, Chen CH, Liu KC. S. C, Lee SS. Helv. Chim. Acta 2003; 86: 127
    • 7d Suksamrarn S, Suwannapoch N, Aunchai N, Kuno M, Ratananukul P, Haritakun R, Jansakul C, Ruchirawat S. Tetrahedron 2005; 61: 1175
    • 7e Morel AF, Maldaner G, Ilha V, Missau F, Dalcol II. Phytochemistry 2005; 66: 2571
    • 7f Tan NH, Zhou J. Chem. Rev. 2006; 106: 840
    • 7g Hesham HR, Seedi RE. I, Zahra MH, Goransson U, Verpoorte R. Phytochem. Rev. 2007; 6: 143

      For recent reviews of synthesis and biological activity, see:
    • 8a Nemr AE. Tetrahedron 2000; 56: 8579
    • 8b Asano N, Nash RJ, Molyneux RJ, Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1645
    • 8c Sears P, Wong C.-H. Angew. Chem. Int. Ed. 1999; 38: 2300
    • 8d Michael JP. Nat. Prod. Rep. 1999; 16: 675
    • 8e Elbein AD, Molyneux RJ In Iminosugars as Glycosidase Inhibitors . Stutz AE. Wiley-VCH; Weinheim: 1999: 216
    • 8f Michael JP. Nat. Prod. Rep. 1997; 14: 619
    • 8g Takahata H, Momose T In The Alkaloids . Vol. 44. Cordell GA. Chap. 3 Academic; San Diego: 1993
    • 8h Elbein AD, Molyneux R In Alkaloids: Chemical and Biological Perspectives . Vol. 5. Pelletier SW. John Wiley & Sons; New York: 1987
  • 9 Ceulemans G, Aerschot AV, Rozenski J, Herdewijn P. Tetrahedron 1997; 53: 14957
    • 10a Irreverre F, Morita K, Robertson AV, Witkop B. Biochem. Biophys. Res. Commun. 1962; 8: 453
    • 10b Irreverre F, Morita K, Robertson AV, Witkop B. J. Am. Chem. Soc. 1963; 85: 2824
    • 10c Sung ML, Fowden L. Phytochemistry 1968; 7: 2061
    • 10d Szymanovicz G, Mercier O, Randoux A, Borel JP. Biochimie 1978; 60: 499
    • 10e Piez KA, Eigner EA, Lewis MS. Biochemistry 1963; 2: 58
    • 10f Fujiwara S, Nagai Y. J. Biochem. 1981; 89: 1397
    • 10g Schwartz RE, Sesin DF, Joshua H, Wilson KE, Kempf AJ, Goklen KA, Kuehner D, Gailliot P, Gleason C, White R, Inamine E, Bills G, Salmon P, Zitano L. J. Antibiot. 1992; 45: 1853
  • 11 Kite GC, Plant AC, Burke A, Simmonds MJ. S, Blaney WM, Fellows LE. Kew Bull. 1995; 858
    • 12a Ogel JD, Arlinghaus RB, Logan MA. J. Biol. Chem. 1962; 273: 3667
    • 12b Copper J, Gallagher PT, Knight DW. J. Chem. Soc., Chem. Commun. 1988; 509
    • 12c Zheng X, Feng CG, Ye JL, Huang PQ. Org. Lett. 2005; 7: 553
    • 12d Lee JH, Kang KE, Yang MS, Kang KY, Park KH. Tetrahedron 2001; 57: 10071
    • 12e Kim JH, Lee WS, Yang MS, Park KH. J. Chem. Soc., Perkin Trans. 1 1998; 2877
    • 12f Mulzer J, Meier A. J. Org. Chem. 1996; 61: 566
    • 12g Mulzer J, Angermann A. Tetrahedron Lett. 1983; 24: 2843
    • 12h Durand JO, Larcheveque M, Petit Y. Tetrahedron Lett. 1998; 39: 5743
    • 12i Trybulski EJ, Kramss RH, Mangano RM, Brabander HJ, Francisco G. Bioorg. Med. Chem. Lett. 1992; 2: 827
    • 12j Herdeis C, Hubmann HP. Tetrahedron: Asymmetry 1994; 5: 119
    • 12k Thottahil JK, Moniot LM, Mueller RH, Wong MK. Y, Kissick TP. J. Org. Chem. 1986; 51: 3140
    • 12l Jurczak J, Prokopowicz P, Golebiowski A. Tetrahedron Lett. 1993; 34: 7107
    • 12m Leanna MR, Sowin TJ, Morton HE. Tetrahedron Lett. 1992; 33: 5029
    • 12n He J, Wang J, Ma D. Org. Lett. 2007; 9: 1367
    • 12o Toumi M, Couty F, Evano G. Angew. Chem. Int. Ed. 2007; 46: 572
    • 12p Uomo ND, Giovanni MC. D, Misiti D, Zappia G, Monache GD. Tetrahedron: Asymmetry 1996; 7: 181
    • 12q Sinha S, Tilve S, Chandrasekaran S. ARKIVOC 2005; xi: 209
    • 12r Kalamkar NB, Vijay MK, Dhavale DD. Tetrahedron Lett. 2010; 51: 6745
    • 13a Chandrasekhar S, Lohitharao Ch, Seenaiah M, Naresh P, Jagadeesh B, Manjeera D, Arpita S, Bhadra MP. J. Org. Chem. 2009; 74: 401
    • 13b Chandrasekhar S, Pavankumarreddy G, Sathish K. Tetrahedron Lett. 2009; 50: 6851
    • 14a Sharpless KB, Katsuki T. J. Am. Chem. Soc. 1980; 102: 5974
    • 14b Baker SR, Boot JR, Morgan SE, Osborne DT, Ross WJ, Shrubsall PR. Tetrahedron Lett. 1983; 24: 4469
    • 14c Pfenninger A. Synthesis 1986; 89

      This cyclization is according to Baldwin’s rules for ring closures, a formally disfavored process. However, Hevko et al. have reported a similar epoxide-opening reaction under basic conditions, where the product of the 5-endo-cyclization is preferred over that from a 4-exo process:
    • 15a Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
    • 15b Hevko JM, Dua S, Taylor MS, Bowie JH. J. Chem. Soc., Perkin Trans. 2 1998; 1629
    • 15c Chandrasekhar S, Jagadeesh V, Prakash SJ. Tetrahedron Lett. 2005; 46: 3127
    • 15d Chandrasekhar S, Vijaykumar BV. D, Pratap TV. Tetrahedron: Asymmetry 2008; 19: 746