Asymmetric Michael Addition of Aldehydes to Nitroalkenes Using JH-CPP

Significance: A chiral porous polymer containing the Jørgensen–Hayashi catalyst (JH-CPP) was prepared by the $\text{Co}_2(\text{CO})_8$-mediated trimerization of the ethynyl-modified Jørgensen–Hayashi catalyst 1 with tetra(4-ethynylphenyl)methane 2 in 98% yield. JH-CPP catalyzed the asymmetric Michael addition of aldehydes 4 to nitroalkenes 3 to give the corresponding adducts 5 in 67–99% yield with high stereoselectivity (10 examples).

Comment: For the formation of $5b$, JH-CPP was recovered by centrifugation and reused four times without loss of stereoselectivity, while the yield of $5b$ decreased from the third reuse (1st reuse: 94% yield, 98% ee, dr = 92:8; 3rd reuse: 51% yield, 97% ee, dr = 91:9; 4th reuse: 39% yield, 97% ee, dr = 88:12). JH-CPP was characterized by N$_2$ adsorption, TGA, XRD, SEM, and 13C CP/MAS NMR spectroscopy.

SYNFACTS Contributors: Yasuhiro Uozumi, Hiroaki Tsuji

Synfacts 2012, 8(8), 0913 Published online: 19.07.2012
DOI: 10.1055/s-0032-1316675; Reg-No.: Y06712SF

Category
Polymer-Supported Synthesis

Key words
Jørgensen–Hayashi catalyst
chiral porous polymers
Michael addition

Asymmetric Michael Addition of Aldehydes to Nitroalkenes Using JH-CPP

Significance: A chiral porous polymer containing the Jørgensen–Hayashi catalyst (JH-CPP) was prepared by the $\text{Co}_2(\text{CO})_8$-mediated trimerization of the ethynyl-modified Jørgensen–Hayashi catalyst 1 with tetra(4-ethynylphenyl)methane 2 in 98% yield. JH-CPP catalyzed the asymmetric Michael addition of aldehydes 4 to nitroalkenes 3 to give the corresponding adducts 5 in 67–99% yield with high stereoselectivity (10 examples).

Comment: For the formation of $5b$, JH-CPP was recovered by centrifugation and reused four times without loss of stereoselectivity, while the yield of $5b$ decreased from the third reuse (1st reuse: 94% yield, 98% ee, dr = 92:8; 3rd reuse: 51% yield, 97% ee, dr = 91:9; 4th reuse: 39% yield, 97% ee, dr = 88:12). JH-CPP was characterized by N$_2$ adsorption, TGA, XRD, SEM, and 13C CP/MAS NMR spectroscopy.

SYNFACTS Contributors: Yasuhiro Uozumi, Hiroaki Tsuji

Synfacts 2012, 8(8), 0913 Published online: 19.07.2012
DOI: 10.1055/s-0032-1316675; Reg-No.: Y06712SF

Category
Polymer-Supported Synthesis

Key words
Jørgensen–Hayashi catalyst
chiral porous polymers
Michael addition