Klinische Neurophysiologie 2012; 43(03): 220-227
DOI: 10.1055/s-0032-1316307
Richard-Jung-Preis
© Georg Thieme Verlag KG Stuttgart · New York

Transkranielle Gleichstromstimulation des menschlichen Gehirns – von den Grundlagen zur klinischen Anwendung

Transcranial Direct Current Stimulation of the Human Brain. From Basic Principles to Clinical Application
M. A. Nitsche
1   Abteilung Klinische Neurophysiologie, Universitätsmedizin Göttingen
› Author Affiliations
Further Information

Publication History

Publication Date:
27 August 2012 (online)

Zusammenfassung

Während in früheren Zeiten davon ausgegangen wurde, dass Struktur und Funktionen des Gehirns nach seiner Reifung weitgehend statisch sind, haben neuere Forschungsergebnisse ergeben, dass auch das adulte Gehirn ständig dynamischen, neuroplastischen Veränderungen unterworfen ist. Im gesunden Gehirn sind diese relevant für Lernen und Gedächtnisbildung, pathologische Veränderungen sind an einer Vielzahl neuropsychiatrischer Erkrankungen beteiligt. Die Entwicklung nicht-invasiver Hirnstimulationsverfahren erlaubt die Erforschung dieser Veränderungen am menschlichen Gehirn und ermöglicht die Beeinflussung pathologischer Plastizitätsprozesse. Die transkranielle Stimulation mit schwachem Gleichstrom (transcranial direct current stimulation, tDCS) ist ein Verfahren zur Erzeugung von Neuroplastizität des menschlichen Gehirns, das vor einigen Jahren eingeführt wurde. tDCS ermöglicht die Induktion lang anhaltender Erregbarkeitsveränderungen des menschlichen Gehirns. Darüber hinaus konnte belegt werden, dass diese Stimulation kognitive und Verhaltensprozesse sowie Symptome bei neuropsychiatrischen Erkrankungen beeinflussen kann, deren Grundlage neuroplastische Modifikationen des Gehirns sind. Diese Arbeit gibt einen Überblick über physiologische Funktionsmechanismen der tDCS sowie funktionelle Auswirkungen im gesunden und erkrankten menschlichen Gehirn.

Abstract

The classical opinion that brain function and structure are stable in adults has been challenged by recent research results, which show highly dynamic neuroplastic alterations during lifetime. These alterations are important for cognition and behaviour in the healthy brain, and pathological alterations contribute to many neuropsychiatric diseases. The development of non-invasive brain stimulation tools fostered the exploration of neuroplastic processes in the healthy human brain, and might also be suited to alter pathological neuroplastic processes. Transcranial stimulation with direct current (transcranial direct current stimulation, tDCS), which has been developed recently, is a tool suited for the induction of neuroplasticity in the human brain. It accomplishes the induction of long-lasting excitability alterations in the human cerebral cortex, and hereby enables the modification of cognition and behaviour. Moreover, it has been shown to improve clinical symptoms in those neuropsychiatric diseases that are accompanied by pathological alterations of neuroplasticity. This review gives an overview about the physiological basics of tDCS, as well as the functional effects in the healthy and the pathologically altered brain.

 
  • Literatur

  • 1 Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004; 44: 5-21
  • 2 May A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci 2011; 15: 475-482
  • 3 Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron 2011; 72: 443-454
  • 4 Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex. Science 2000; 290: 533-536
  • 5 Boggio PS, Ferrucci R, Mameli F et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul im Druck
  • 6 Arya KN, Pandian S, Verma R et al. Movement therapy induced neural reorganization and motor recovery in stroke: a review. J Bodyw Mov Ther 2011; 15: 528-537
  • 7 Ziemann U, Paulus W, Nitsche MA et al. Consensus: Motor cortex plasticity protocols. Brain Stimul 2008; 1: 164-182
  • 8 Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 1964; 172: 369-382
  • 9 Lolas F. Brain polarization: behavioral and therapeutic effects. Biol Psychiatry 1977; 12: 37-47
  • 10 Nitsche MA, Liebetanz D, Antal A et al. Modulation of cortical excitability by weak direct current stimulation – technical, safety and functional aspects. In: Paulus W, Tergau F, Nitsche MA, Rothwell JC, Ziemann U, Hallett M. (eds.). Transcranial magnetic and transcranial direct current stimulation. Clin Neurophysiol. 2003. Suppl Vol. 56. Amsterdam: Elsevier; 255-276
  • 11 Nitsche MA, Cohen LG, Wassermann EM et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulation 2008; 1: 206-223
  • 12 Nitsche MA, Paulus W. Transcranial direct current stimulation – update 2011. Restor Neurol Neurosci 2011; 29: 463-492
  • 13 Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol 1962; 5: 436-452
  • 14 Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 1965; 28: 166-185
  • 15 Gartside IB. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization. Role of protein synthesis Nature 1968; 220: 383-384
  • 16 Terzuolo CA, Bullock TH. Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci USA. 1956; 42: 687-694
  • 17 Bikson M, Inoue M, Akiyama H et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. Physiol 2004; 557: 175-190
  • 18 Yuen TG, Agnew WF, Bullara LA et al. Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery 1981; 9: 292-299
  • 19 Rush S, Driscoll DA. Current distribution in the brain from surface electrodes. Anaest Analg Curr Res 1968; 47: 717-723
  • 20 Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 1994; 22: 253-305
  • 21 Frégnac Y, Smith D, Friedlander MJ. Postsynaptic membrane potential regulates synaptic potentiation and depression in visual cortical neurons [abstract]. Soc Neurosci Abstr 1990 16: 798
  • 22 Dymond AM, Coger RW, Serafetinides EA. Intracerebral current levels in man during electrosleep therapy. Biol Psychiatry 1975; 10: 101-104
  • 23 Bikson M, Datta A, Rahman A et al. Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurophysiol 2010; 121: 1976-1978
  • 24 Faria P, Hallett M, Miranda PC. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng 2011; 8: 066017
  • 25 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527: 633-639
  • 26 Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001; 57: 1899-1901
  • 27 Nitsche MA, Nitsche MS, Klein CC et al. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 2003; 114: 600-604
  • 28 Antal A, Kincses TZ, Nitsche MA et al. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 2004; 45: 702-707
  • 29 Dieckhöfer A, Waberski TD, Nitsche M et al. Transcranial direct current stimulation applied over the somatosensory cortex – differential effect on low and high frequency SEPs. Clin Neurophysiol 2006; 117: 2221-2227
  • 30 Kraft A, Roehmel J, Olma MC et al. Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res 2010; 207: 283-290
  • 31 Matsunaga K, Nitsche MA, Tsuji S et al. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 2004; 115: 456-460
  • 32 Nitsche MA, Seeber A, Frommann K et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 2005; 568: 291-303
  • 33 Nitsche MA, Fricke K, Henschke U et al. Pharmacological modulation of cortical excitability shifts induced by transcranial DC stimulation. J Physiol 2003; 553: 293-301
  • 34 Nitsche MA, Jaussi W, Liebetanz D et al. Consolidation of externally induced human motor cortical neuroplasticity by d-cycloserine. Neuropsychopharmacology 2004; 29: 1573-1578
  • 35 Ardolino G, Bossi B, Barbieri S et al. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol 2005; 568: 653-663
  • 36 Keeser D, Padberg F, Reisinger E et al. Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage 2011; 55: 644-657
  • 37 Antal A, Varga ET, Kincses TZ et al. Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport 2004; 15: 1307-1310
  • 38 Lang N, Siebner HR, Ward NS et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?. Eur J Neurosci 2005; 22: 495-504
  • 39 Polanía R, Paulus W, Nitsche MA. Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS One 2012; 7: e30971
  • 40 Polanía R, Paulus W, Antal A et al. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage 2011; 54: 2287-2296
  • 41 Polanía R, Nitsche MA, Paulus W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 2011; 32: 1236-1249
  • 42 Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp im Druck
  • 43 Morrell F, Naitoh P. Effect of polarization on a conditioned avoidance response. Exp Neurology 1962; 6: 507-523
  • 44 Proctor F, Pinto-Hamuy T, Kupferman I. Cortical stimulation during learning in rabbits. Neuropsychologia 1964; 2: 305-310
  • 45 Albert DJ. The effects of polarizing currents on the consolidation of learning. Neuropsychologie 1966; 4: 65-77
  • 46 Rosen SC, Stamm JS. Transcortical polarization: facilitation of delayed response performance by monkeys. Exp Neurol 1972; 35: 282-289
  • 47 Antal A, Nitsche MA, Kinsces TZ et al. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci 2004; 19: 2888-2892
  • 48 Nitsche MA, Schauenburg A, Lang N et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cog Neurosci 2003; 15: 619-626
  • 49 Kuo M-F, Unger M, Liebetanz D et al. Limited impact of homeostatic plasticity on motor learning in humans. Neuropsychologia 2008; 46: 2122-2128
  • 50 Nitsche MA, Jakoubkova M, Thirugnanasambandam N et al. Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. J Neurophysiol 2010; 104: 2603-2614
  • 51 Reis J, Schambra HM, Cohen LG et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 2009; 106: 1590-1595
  • 52 Kincses TZ, Antal A, Nitsche MA et al. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 2004; 42: 113-117
  • 53 Flöel A, Rösser N, Michka O et al. Noninvasive brain stimulation improves language learning. J Cogn Neurosci 2008; 20: 1415-1422
  • 54 de Vries MH, Barth AC, Maiworm S et al. Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J Cogn Neurosci 2010; 22: 2427-2436
  • 55 Chi RP, Fregni F, Snyder AW. Visual memory improved by non-invasive brain stimulation. Brain Res 2010; 1353: 168-175
  • 56 Antal A, Nitsche MA, Kruse W et al. Visuomotor coordination is improved by transcranial direct current stimulation of the human visual cortex. J Cog Neurosci 2004; 16: 521-527
  • 57 Antal A, Nitsche MA, Paulus W. External modulation of visual perception in humans. Neuroreport 2001; 12: 3553-3555
  • 58 Antal A, Brepohl N, Poreisz C et al. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception.. Clin J Pain 2008; 24: 56-63
  • 59 Grundmann L, Rolke R, Nitsche MA et al. Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul 2011; 4: 253-260
  • 60 Ragert P, Vandermeeren Y, Camus M et al. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol 2008; 119: 805-811
  • 61 Rogalewski A, Breitenstein C, Nitsche MA et al. Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci 2004; 20: 313-316
  • 62 Bolognini N, Olgiati E, Rossetti A et al. Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci 2010; 31: 1800-1806
  • 63 Ladeira A, Fregni F, Campanhã C et al. Polarity-dependent transcranial direct current stimulation effects on central auditory processing. PLoS One 2011; 6: e25399
  • 64 Loui P, Hohmann A, Schlaug G. Inducing Disorders in Pitch Perception and Production: a Reverse-Engineering Approach. Proc Meet Acoust 2010; 9: 50002
  • 65 Fregni F, Boggio PS, Nitsche M et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 2005; 166: 23-30
  • 66 Zaehle T, Sandmann P, Thorne JD et al. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci 2011; 12: 2
  • 67 Mulquiney PG, Hoy KE, Daskalakis ZJ et al. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol 2011; 122: 2384-2389
  • 68 Teo F, Hoy KE, Daskalakis ZJ et al. Investigating the Role of Current Strength in tDCS Modulation of Working Memory Performance in Healthy Controls. Front Psychiatry 2011; 2: 45
  • 69 Cerruti C, Schlaug G. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci 2009; 21: 1980-1987
  • 70 Chi RP, Snyder AW. Facilitate insight by non-invasive brain stimulation. PLoS One 2011; 6: e16655
  • 71 Dockery CA, Hueckel-Wenig R, Birbaumer N et al. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci 2009; 29: 7271-7277
  • 72 Fecteau S, Pascual-Leone A, Zald DH et al. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci 2007; 27: 6212-6218
  • 73 Fecteau S, Knoch D, Fregni F et al. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci 2007; 27: 12500-12505
  • 74 Knoch D, Nitsche MA, Fischbacher U et al. Studying the neurobiology of social interaction with transcranial direct current stimulation – the example of punishing unfairness. Cereb Cortex 2008; 18: 1987-1990
  • 75 Nguyen JP, Lefaucheur JP, Decq P et al. Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical, electrophysiological and anatomical data. Pain 1999; 82: 245-251
  • 76 Fregni F, Boggio PS, Lima MC et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 2006; 122: 197-209
  • 77 Fregni F, Gimenes R, Valle AC et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 2006; 54: 3988-3998
  • 78 Fenton BW, Palmieri PA, Boggio P et al. A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimul 2009; 2: 103-107
  • 79 Mori F, Codecà C, Kusayanagi H et al. Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J Pain 2010; 11: 436-442
  • 80 Antal A, Terney D, Kühnl S et al. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J Pain Symptom Manage 2010; 39: 890-903
  • 81 Boggio PS, Amancio EJ, Correa CF et al. Transcranial DC stimulation coupled with TENS for the treatment of chronic pain: a preliminary study. Clin J Pain 2009; 25: 691-695
  • 82 Riberto M, Marcon Alfieri F, Monteiro de Benedetto Pacheco K et al. Efficacy of transcranial direct current stimulation coupled with a multidisciplinary rehabilitation program for the treatment of fibromyalgia. Open Rheumatol J 2011; 5: 45-50
  • 83 Baxter Jr LR, Schwartz JM, Phelps ME et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989; 46: 243-250
  • 84 Li X, Nahas Z, Kozel FA et al. Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions. Biol Psychiatry 2004; 55: 882-890
  • 85 Okada G, Okamoto Y, Morinobu S et al. Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology 2003; 47: 21-26
  • 86 Martin JL, Barbanoji MJ, Schlaepfer TE et al. Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry 2003; 182: 480-491
  • 87 O’Reardon JP, Solvason HB, Janicak PG et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 2007; 62: 1208-1216
  • 88 Nitsche MA, Boggio PS, Fregni F et al. Treatment of depression with transcranial direct current stimulation (tDCS): A Review. Exp Neurol 2009; 219: 14-19
  • 89 Fregni F, Boggio PS, Nitsche MA et al. Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 2006; 8: 203-204
  • 90 Brunoni AR, Ferrucci R, Bortolomasi M et al. Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 96-101
  • 91 Ferrucci R, Bortolomasi M, Vergari M et al. Transcranial direct current stimulation in severe, drug-resistant major depression. J Affect Disord 2009; 118: 215-219
  • 92 Loo CK, Alonzo A, Martin D et al. Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br J Psychiatry 2012; 200: 52-59
  • 93 Boggio PS, Rigonatti SP, Ribeiro RB et al. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int J Neuropsychopharmacol 2008; 11: 249-254
  • 94 Rigonatti SP, Boggio PS, Myczkowski ML et al. Transcranial direct stimulation and fluoxetine for the treatment of depression. Eur Psychiatry 2008; 23: 74-76
  • 95 Loo CK, Sachdev P, Martin D et al. A double-blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. Int J Neuropsychopharmacol 2010; 13: 61-69
  • 96 Palm U, Schiller C, Fintescu Z et al. Transcranial direct current stimulation in treatment resistant depression: a randomized double-blind, placebo-controlled study. Brain Stimul im Druck
  • 97 Wittenberg GF, Schaechter JD. The neural basis of constraint-induced movement therapy. Curr Opin Neurol 2009; 22: 582-588
  • 98 Fregni F, Boggio PS, Mansur CG et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005; 16: 1551-1555
  • 99 Hummel F, Celnik P, Giraux P et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005; 128: 490-499
  • 100 Celnik P, Paik NJ, Vandermeeren Y et al. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke 2009; 40: 1764-1771
  • 101 Lindenberg R, Renga V, Zhu LL et al. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 2010; 75: 2176-2184
  • 102 Nair DG, Renga V, Lindenberg R et al. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restor Neurol Neurosci 2011; 29: 411-420
  • 103 Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 2010; 41: 1229-1236
  • 104 Fiori V, Coccia M, Marinelli CV et al. Transcranial Direct Current Stimulation Improves Word Retrieval in Healthy and Nonfluent Aphasic Subjects. J Cogn Neurosci im Druck
  • 105 Jo JM, Kim YH, Ko MH et al. Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil 2009; 88: 404-409
  • 106 Kang EK, Baek MJ, Kim S et al. Non-invasive cortical stimulation improves post-stroke attention decline. Restor Neurol Neurosci 2009; 27: 645-650