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Abstract

v

There is a continued predisposition of concurrent
use of drugs and botanical products. A general
lack of knowledge of the interaction potential to-
gether with an under-reporting of botanical use
poses a challenge for the health care providers
and a safety concern for patients. Botanical-drug
interactions increase the patient risk, especially
with regard to drugs with a narrow therapeutic
index (e.g., warfarin, cyclosporine, and digoxin).
Examples of case reports and clinical studies eval-
uating botanical-drug interactions of commonly
used botanicals in the US are presented. The po-
tential pharmacokinetic and pharmacodynamic
bases of such interactions are discussed, as well
as the challenges associated with the interpreta-
tion of the available data and prediction of botan-
ical-drug interactions. Recent FDA experiences
with botanical products and interactions includ-
ing labeling implications as a risk management
strategy are highlighted.
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v
ADME: absorption, distribution, metabolism,

and excretion

AhR: aryl hydrocarbon receptor

AUC: area under the plasma concentration-
time curve

BCRP: breast-cancer resistant protein

DHB: 6',7'-dihydroxybergamottin

CAR: constitutive androstane receptor
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Crin: trough plasma concentration

CL/F: apparent oral clearance

CYP: cytochrome P450

FDA: Food and Drug Administration
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Ki: inhibition constant

MRP: multidrug resistance associated
protein

P-gp: P-glycoprotein

PXR: pregnane X receptor

PBPK: physiologically-based
pharmacokinetic

OATP: organic anion-transporting
polypeptide

SJW: St. John’s wort

SULT: sulfotransferase

UGT: UDP-glucuronosyl transferase
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Introduction

v

The use of botanicals as dietary supplements has
increased significantly over the past decades. The
botanical product sales in the US have increased
steadily over the years, by 8% in 2007 over the
preceding year, then increasing by 7% in 2008
and 14% in 2009 [1]. Recent surveys reveal that
approximately 20% of Americans use botanicals
and 20-30% indicated concurrent use of botani-
cals with conventional drugs [2,3]. In addition,
there is an underreporting of such use to health
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care practitioners [4]. As more consumers use bo-
tanicals to promote health or to manage various
common chronic diseases, for which they often
take prescribed drugs concomitantly, the likeli-
hood of potential pharmacokinetic and/or phar-
macodynamic botanical-drug interactions in-
crease.

Although the efficacy of some botanicals has been
documented [5], there is a concern regarding the
perceived safety of these products [6], particu-
larly with respect to knowledge on botanical-
drug interaction potential and its clinical signifi-
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cance [7]. Indeed, clinically significant botanical-drug interac-
tions have been reported. St. John’s wort (Hypericum perforatum
L.), a popular botanical used in the management of mild or mod-
erate depression, has been shown to adversely alter the pharma-
cokinetics of several prescribed drugs (e.g., cyclosporine [8] and
irinotecan [9]) resulting in therapeutic failure. A recent review
of published clinical evidence identified 34 prescription drugs
with a potential for interaction with botanical products. Most of
the drugs are administered in long-term regimens and include
antiretroviral agents, immunosuppressants, cardiovascular and
oncology drugs with many of them having a narrow therapeutic
index [10].

The purpose of this review is to present an overview of common
mechanisms of botanical-drug interactions using specific litera-
ture examples. The evaluation of botanical-drug interactions us-
ing in vitro approaches and clinical trials, as well as the challenges
associated with the interpretation of the results are reviewed and
discussed. Moreover, this work highlights the regulatory per-
spectives on botanical products, including the labeling implica-
tions for potential interactions.

Mechanisms of Botanical-Drug Interactions

v

As for any drug-drug interactions, both pharmacokinetic (PK) and
pharmacodynamic (PD) mechanisms may be implicated in bo-
tanical interactions with prescribed or over-the-counter drugs.

Altered pharmacokinetics

The most commonly documented botanical-drug interactions af-
fect PK by altering drug absorption, distribution, metabolism, and
excretion (ADME). Changes in drug absorption may be mediated
through modulation of intestinal uptake and efflux transporters,
while changes in metabolism/excretion occur through modula-
tion of hepatic/renal uptake and efflux transporters, and/or
through inhibition/induction of metabolizing enzymes. Examples
of altered drug distribution as a result of protein binding dis-
placement by botanicals have not been reported. Tissue uptake
transporters also play a role in drug distribution, thus modula-
tion of these transporters by botanical constituents may affect
plasma and tissue exposure. The primary mechanism of reported
botanical-drug PK interactions is modulation of metabolizing en-
zymes and/or transporters in the intestine and liver.

Modulation of metabolizing enzymes: The human cytochrome
P450 (CYP) family of enzymes, including CYP1A1/2, CYP2A6,
CYP2B6, CYP2C8/9/19, CYP2D6, CYP2E1, and CYP3A4/5 is in-
volved in the oxidative metabolism (phase I) of the majority of
drugs used in clinical practice. CYP3A4 is the most abundant
CYP in the liver and intestine. While it catalyzes the metabolism
of 50-60% of current marketed drugs [11], CYP2C19 and CYP2D6
are the major metabolizing enzymes for 15% and 20% of drugs,
respectively [12]. UDP-glucuronosyl transferases (UGTs) include
the UGT1 and UGT2 families of enzymes and are responsible for
glucoronidation of 35% of drugs metabolized by phase Il enzymes
[13].

Inhibition of enzymes can be classified into reversible and irre-
versible inhibition. While the competitive mechanism of revers-
ible inhibition results in an almost immediate response, mecha-
nism-based inhibition is characterized by a time- and concentra-
tion-dependent blockage [14]. The irreversible inhibition can
completely inactivate the drug’s metabolism and can persist even
after the withdrawal of the botanicals since the recovery of en-
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zyme activity requires de novo enzyme synthesis. Irreversible in-
hibition of CYPs has been demonstrated in vitro by diallyl sulfone
(in garlic), glabridin (in licorice root), methysticin (in Kava) [15,
16], and silybin (in milk thistle) [17].

The grapefruit juice (GFJ) furanocumarins, 6',7'-dihydroxyberga-
mottin (DHB), bergamottin, and paradisins, are capable of inhib-
iting CYP activity, both reversibly and irreversibly, with in vitro
inhibitory constants in the nanomolar to micromolar range [18-
20]. Mechanism-based inhibition of CYP3A by DHB and berga-
mottin may explain the clinically observed irreversible loss of in-
testinal CYP3A protein, without altered CYP3A mRNA levels, after
ingestion of GFJ [20,21]. Examples of the variable content of these
enzyme modulators in different grapefruit juice products sold in
the US is demonstrated in © Fig. 1A.

GFJ is a unique CYP3A inhibitor since usual dietary consumption
of GFJ inhibits only enteric, but not hepatic CYP3A activity. Clini-
cal evidence has shown that concomitant GFJ ingestion increases
the systemic exposure of orally administered CYP3A substrates
which have low oral bioavailability due to extensive presystemic
extraction by enteric CYP3A [22]. Examples of grapefruit-drug in-
teractions are illustrated in © Tables 1 and 2, and their impact on
drug labeling is listed in Table 1S.

Inhibition of CYP3A activity is proposed as the mechanism of in-
teraction between cyclosporine and berberine, an isoquinoline
alkaloid of goldenseal (Hydrastis canadensis), a popular botanical
used as a topical antimicrobial and for digestive disorders. Cyclo-
sporine (CYP3A4/P-gp substrate) blood concentration was in-
creased in healthy volunteers [23] and in renal transplant recipi-
ents [24] after coadministration of 0.3 g (single dose) or 0.2 g (tid,
3 months), respectively, of a goldenseal product. Evidence of
goldenseal’s inhibition potential against CYP3A4, CYP2D6, and
CYP2E1 has been demonstrated in vitro [25-27]. Inhibitory effect
of berberine on CYP3A4 was observed at lower incubation con-
centrations (0.3 and 1 uM) while an inductive effect was shown
at a higher concentration (10 M) [27,28]. Further support of
CYP modulation by goldenseal was provided in three clinical
studies where CYP2D6 and CYP3A4/5 activity was decreased,
while CYP1A2 remained unaltered [29-31] (© Tables 1 and 2).
Induction defines any mechanism that results in increased con-
centration of catalytically active protein involved in drug metab-
olism and/or transport. The most common mechanism of induc-
tion is ligand-dependent biding and activation of nuclear recep-
tors that function as gene transcription factors, such as AhR (aro-
matic hydrocarbon receptor), CAR (constitutive androstane re-
ceptor), and PXR (pregnane X receptor) [32,33]. Induction is a
regulated process which requires time to reach a higher steady-
state protein level. Also, the transcriptional regulation of en-
zymes is commonly cell-type and tissue- and species-selective
[12,32].

Preclinical and clinical data have provided evidence of St. John's
wort (Hypericum perforatum, SJW) inductive effect on several
CYP isoforms, including CYP3A4, CYP2C19, and CYP2E1. Chronic
exposure of human hepatocytes to hyperforin, but not hypericin,
increased mRNA and protein expression, and CYP3A4 activity
[34]. The increased CYP3A4 expression by SJW is mediated via
PXR activation [35-37] and hyperforin, one of the main active
constituents of SJW, is the most potent agonist for PXR. In one
study, its binding affinity K was detected to be 27 nM [35].
Induction of intestinal and hepatic CYP3A4 by SJW did alter the
bioavailability and clearance of concurrent drugs that are mainly,
or partly, metabolized by CYP3A4. For example, long-term SJW
treatment reduced the area under the concentration-time curve
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mulations of commonly used commercial botanical products in the US -
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the average of two lots. Numbers in parentheses represent different formu-
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perforatum); from references [54,55]. C Ginkgo biloba. Four different formu-
lations and five commercially available products from different manufac-
turers were evaluated; from references [195,196]. D Garlic (Allium sativa).
Six different formulations were evaluated from at least two different manu-
factures. Bars represent the range of the constituents measured. When a bar
is not available, the constituents were not detected (below the limit of de-
tection) in the product; from reference [106]. E Ginseng (Panax ginseng).
Marker is reported as total ginsenosides; from reference [55]. F Echinacea
purpurea. Marker is reported as total phenolic compounds, including echina-
coside, cattaric acid, chologenic acid, and cichoric acid; from reference [55].
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Table 1 Effect of botanical product extracts and their active constituents on metabolic enzymes and transporters.

Botanical (known enzyme|
transporter modulator)

Enzyme and transporter
affected?

Garlic extract (allicin and alliin) CYP2D6 (<) CYP3A4 (<)
CYP1A2 () CYP2C9 ()
P-gp (1)
Garlic oil (diallyl sulfide) CYP2E1 ({)
Ginkgo biloba [Flavonoids CYP2D6 (<) CYP3A4 («)
(e.g., quercetin, kaempferol) and CYP2C19( 1)
terpenoids (ginkgolides A and B, CYP2C9 (possible 1)
and bilobalide)] P-gp (1)
OATP2B1 (1)
Ginseng (Ginsenoside Rb1, Rb2, CYP3A4 (<) CYP2D6 (<)

Rc, Rd, Re, and Rf)

CYP1A2 (<) CYP2ET ()
CYPIAT (1) CYPIBT (L)

CYP2C19(L)CYP2Co (L)
Goldenseal (Alkaloids berberine CYP3A4 (1) CYP2D6 (!)
and hydrastine) CYP1A2 () CYP2E1 («)
Grapefruit juice (Flavonoids narin- Enteric CYP3A4 (1)
gin/naringenin and quercetin, and P-gp (1)
furanocoumarins bergamottin, OATPTA2 (L)
6'7'-dihydroxybergamottin) OATP2B1(!)
Milk thistle (Flavonolignans CYP2C9 (1) CYP3A4 (<)
silybin) CYP1A2 (<) CYP2D6 (<)

St. John’s wort [Phloroglucinol
hyperforin and flavonoids (e.g.,
quercetin)]

CYP2ET (<) CYP2C8 (1)
UGTTAG6/9 (L) UGTIAT (1)
UGT2B7/15 (L)
(OATP1B1®)

P-gp (L) MRPT (L)
CYP1A2 (1) CYP2E1(1)
CYP3A4 (1) CYP2C9 (1)
CYP2C19(1)P-gp (1)
UGTTA6 (L)

Possible affected drug class (drug example)®

Antiretroviral (saquinavir) [97, 98], CYP2E1 probe chlorzoxazone [45, 46]

Antihistamine (fexofenadine) [79, 197], beta-blocker (talinolol) [76, 77], proton
pump inhibitor (omeprazole) [188]

Central nervous system agent (midazolam) [31], CYP2D6 probe debrisoquine [29],
immunosuppressant (cyclosporine) [23, 24]

Antihistamines (fexofenadine, terfenadine), anti-infectives (e.g., erythromycin,
halofantrine, praziquantel), antiretrovirals (saquinavir), cardiovascular drugs (e.g.,
aliskiren, azelnidipine, celiprolol, felodipine, manidipine, nicardipine, nifedipine,
nimodipine, nisoldipine, talinolol), central nervous system agents (e.g., alfentanil,
buspirone, carbamazepine, diazepam, fluvoxamine, methadone, midazolam, phe-
nytoin, sertraline, triazolam), immunosuppressants (e.g., cyclosporine, tacrolimus),
statins (e.g., atorvastatin, lovastatin, simvastatin), oncology agents (etoposide)
[22)f

Cardiovascular drugs (e.g., losartan [169] and talinolol [198])

Antiretrovirals (e.g., indinavir, lamivudine, nevirapine), cardiovascular drugs (e.g.,
digoxin, ivabradine, nifedipine, talinolol, verapamil, warfarin), central nervous sys-
tem agents (e.g., amitriptyline, alprazolam, buspirone, methadone, midazolam,
phenytoin, sertraline), hypoglycaemic agents (gliclazide), immunosuppressants
(e.g., cyclosporine, tacrolimus), statins (e.g., atorvastatin, simvastatin), oncology
agents (imatinib, irinotecan), proton pump inhibitors (e.g., cimetidine, omepra-
zole,), respiratory system agents (e.g., fexofenadine, theophylline) [92, 93] ¢

2 The enzymes and|/or transporters modulating effect [( T) increase, (| ) decrease, (<) no effect] are based on human trials except those in italic, which are based on in vitro data

only. ® Listed drugs with published clinical drug-botanical interaction based on pharmacokinetic mechanism. ¥ References in brackets refer to comprehensive reviews of botanical-

drug interactions with details of the respective clinical trials

(AUC) and/or maximum plasma concentration (Cpax) of nevira-
pine [38], ivabradine [39], quazepam [40], and verapamil [41].
SJW (standardized extract, 0.825 mg hypericin, and 12.5 mg hy-
perforin, 3 tablets/day, 14 days) increased the oral clearance of
both enantiomers of warfarin, 29% for S-warfarin (CYP2C9 sub-
strate) and 23% for R-warfarin (CYP3A4/CYP1A2 substrate), re-
sulting in a significant reduction of the anticoagulant effect of
rac-warfarin [42].

A dose-dependent effect of SJW against CYP2C19 and CYP2E1
was observed in human hepatocytes; inhibition at a low incuba-
tion concentration (8 pg/mL) and induction at a higher concen-
tration (800 pg/mL) [43]. Also, CYP1A2 protein expression raised
2%, 30%, and 90% by increasing concentrations of SJW extracts
(100-, 10-, and 1- fold dilution of 9.4mM of hypericin and
10 mM hyperforin) in human intestinal cells (LS180) [44]. In hu-
mans, the inductive effect of SJW (900 mg/day, 14 days) on
CYP2E1 and CYP2C19 was demonstrated by the increase in the
serum metabolic ratio of clorzoxazone [45,46] and in the urinary
excretion of mephenytoin metabolite [47], respectively. Addi-
tionally, SJW induced both CYP3A4-catalyzed sulfoxidation and

CYP2C19-dependent hydroxylation of omeprazole resulting in a
CYP2C19 genotype-dependent decrease in omeprazole AUC and
Cmax [48] (© Table 2). SJW constituents also likely mediated the
induction of CYP2C9 metabolism (and/or CYP2C19) of gliclazide
(47% increase in the oral clearance) leading to a reduction in the
drug’s AUC and half-life [49]. On the other hand, short-term and
long-term SJW coadministration failed to alter the PK of tolbuta-
mide, a CYP2C9 substrate, in two PK studies [50,51]. Induction of
CYP1A2 (20% increase in the metabolic ratio of caffeine) was ob-
served only in the female population using SJW (300 mg tid, 14
days) [52] in one study whereas no effect was observed in three
other trials [45,46,50]. Interestingly, theophylline plasma con-
centration was decreased in a female patient after SJW adminis-
tration [53]. The inconsistency in the clinical observations may be
explained by the variability on the content of SJW components
found among products [54,55] including the constituent of the
botanical that is responsible for enzyme induction, hyperforin
(CFig. 1B).

Additionally, botanicals such as SJW may exhibit a biphasic effect
on CYP enzymes: an initial inhibitory effect when given 24 hr pri-
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Table 2 Selected examples of clinical botanical-drug interactions involving drugs that are CYP, P-gp, and OATP substrates.

Botanical product (study design) Prescribed|probe
drug (dosage)

Echinacea purpurea (500 mg extract, tid, 28 days,n=8 Midazolam

male and 5 female healthy volunteers) (8 mg SD)

Ginkgo biloba (standardized extract with 23 % flavonol gly- Omeprazole

cosides and 7% terpene lactones, 140 mg bid, 12 days, n=6 (40 mg SD)

CYP2C19 homozygous EM, n =5 heterozygous EM, n =7 PM

healthy Chinese males)

Ginkgo biloba (standardized extract, 120 mg tid, 14 days, Talinolol

n =12 male healthy volunteers) (100 mg SD)

Ginkgo biloba (standardized extract, 120 mg tid, 24 days, Talinolol (100 mg,

n =10 male Chinese healthy volunteers) days 9-23)

Goldenseal (as berberine 0.2 g tid, 3 months, n =52 renal-
transplant recipients)

Cyclosporine
(3 mg/kg bid, 3

months)
Goldenseal (900 mg root extract, tid, 28 days, n = 6 male Midazolam
and n = 6 female healthy volunteers) (8 mg SD)
Goldenseal (1227 mg root extract with 77 mg of berberine, Midazolam
and 132 mg of hydrastine, tid, 14 days, n=8 maleand n=8 (8 mg SD)

female healthy volunteers)
Goldenseal (900 mg root extract, tid, 28 days, n = 6 male

Debrisoquine

and n = 6 female healthy volunteers) (5mg SD)
Grapefruit juice #(200 ml double-strength*#, tid for 2 days, Simvastatin
day 3: 200 ml with simvastatin single dose and at 30 and (*60 or 820 mg SD)

90 min postdose, n = 10 healthy volunteers) or §(8 oz.

(237 mL) single-strength"® morning for 3 days, simvastatin

dosed in the evening day 3, n = 16 healthy volunteers)

Grapefruit juice (200 ml normal strength, tid for 5 days, day Aliskiren

3:200 ml with aliskiren dose in the morning and at 4 and 12 (150 mg SD)
hours postdose, n =5 female and n = 6 male healthy volun-

teers)

Kava (1000 mg root extract, bid, 28 days, n =6 male and Chorzoxazone
n = 6 female healthy volunteers) (250 mg SD)

St. John’s wort (600 mg extract, qd, 14 days, n=11 renal
transplant patients)

Cyclosporine
(median 2.8 mg/
kg/day)

St. John’s wort (300 mg extract, tid, 14 days,n=6 Omeprazole
CYP2C19*1/*1,n=4 CYP2C19*2/*2 and n=2 CYP*2/*3

healthy males)

(20 mg qd, 14 days)

Clinical interaction outcome (possible mechanism) Refer-
ence
27% 1 inAUCand 37% 1 in CL/F (induction of CYP3A) [199]
InPM, 25% | in AUC metabolic ratio. In homozygous and [188]
heterozygous EM, 58% | and 47% | in AUC metabolic ratio,
respectively (genotype-dependent induction of CYP2C19)
21% 1 inAUCand 33% 1 in Cyax (inhibition of Pg-p) [76]
26% 1 in AUCand 36% T in Cax (inhibition of Pg—p) [77]
29% 1 in Comin (inhibition of CYP3A) [24]
40% 1 in serum metabolic ratio (inhibition of CYP3A) [29]
62% 1 inAUC,41% 1 in Crnax, and 36% ! in CL/F [31]
(inhibition of CYP3A)
40% 1 in urinary recovery ratio (inhibition of CYP2D6) [29]
#1500% 1 or%90% T in AUC of simvastatin, and #580% 1 or [200]*
830% 1 in AUC of simvastatin acid; #840% 1 or380% 1 in [201]%
Crmax Of simvastatin, and #550% T or$30% 7T in Cpay Of
simvastatin acid (inhibition of enteric CYP3A4)
81% | inCnax, 61% L in AUC (inhibition of OATP2B1) [202]
40% 1 in serum metabolic ratio (inhibition of CYP2ET) [29]
46% | inAUC, 42 | inCmax41% ! in Cyin; Cyclosporine [87]

dose adjustment was required to ensure concentrations are

within the therapeutic range (induction of CYP3A and P-gp)

44% | and 38% | in AUC of omeprazole,37% 1 and 0% in [48]
AUC of 5-OH-omeprazole, 136% T and 159% 1 in AUC of
omeprazole sulfone in subjects with CYP2C19 wild-type and

variant, respectively. (induction of CYP3A and CYP2C19)

Abbreviations: Ciax, maximum plasma concentration; Cry;n, trough plasma concentration; AUC, area under the plasma concentration-time curve; SD, single dose administration;
EM, extensive metabolizers; PM, poor metabolizers; CL/F, apparent oral clearance; T increase ! decrease. ** Double-strength: one can of GF| frozen concentrate diluted with one

can of water. *$ Single-strength: one can of GF] frozen concentrate diluted with 3 cans of water

or to testing with induction after chronic exposure [34]. Using
CYP recombinant systems, hyperforin behaved as a competitive
inhibitor of CYP3A4 (K;=0.48 uM) and CYP2C9 (K; = 1.8 tM) and
a noncompetitive inhibitor of CYP2D6 (Kj= 1.5 uM). I3,118-biapi-
genin, a flavonoid component of SJW, was also shown to be a
competitive inhibitor of CYP3A4 (K;=0.038uM), CYP2C9
(K;=0.32 pM), and CYP1A2 (K;=0.95 uM) [56]. The acute inhib-
itory potential of SJW constituents was confirmed in another in
vitro study [34,57]. In humans, single-dose exposure of SJW
caused inhibition of voriconazole (CYP2C19/CYP2C9/CYP3A4
substrate) metabolism, while long exposure led to induction
[58]. Details of this and other examples of SJW-mediated interac-
tions and drugs that are likely to interact with SJW are discussed
throughout this work and listed in © Table 1 and Table 1S.

Interactions resulting from Ginkgo biloba modulation of CYP2C9
function remain controversial. Ginkgo extract competitively in-
hibited CYP2C9 (Kj=14.8ug/mL) in human liver microsomes
[59]; but in clinical trials, coadministration of the standardized
ginkgo leaf extract (EGb-761), given either as 80 mg/day or

240 mg/day for 3 or 7 days, had no effect on the PK of the CYP2C9
substrates tolbutamine, diclofenac [59], warfarin [60], and ticlo-
pidine [61] in healthy subjects. However, using a higher dose
(360 mg/day) for a longer period (28 days) than those used in
the previous studies, the AUC of tolbutamide was decreased by
16% in healthy volunteers, possibly indicating CYP2C9 induction
[62]. Again, the disagreement among studies may also be due to
the variable content of the active constituents that may be found
in different ginkgo formulations as exemplified in © Fig. 1C.
Compared to CYP enzymes, evidence of the modulation of phase
Il enzymes by botanicals is limited. Ginkgo extract increased glu-
tathione S-transferase (GST) expression and activity levels in
HepG2 and Hep1cl1c7 cells lines [63] and in rodents after 1 week
of exposure [64]. Ginkgo extract and its main flavonoids, querce-
tin and kaempferol, may also modulate UGT enzymes as demon-
strated by the inhibition of the glucuronidation of mycophenolic
acid in human microsomes; while ginkgo terpenoids, ginkgolides
A and B, and bilobalide, showed no effect [65].
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Silybin, an active flavonolignan of milk thistle (Silybum maria-
num), was shown to be a potent inhibitor of UGT1A1 (ICs¢ of
1.4uM) and other UGTs with less potency (ICsg range=28-
75uM) [17]. Silybin also inhibited CYP3A4 activity in vitro (K;
range = 5-160 uM) [17]. However, the modulation of these en-
zymes has not been observed in vivo. Administration of milk this-
tle extract (standardized 80% of silymarin, 200 mg tid, for 4 or 12
days) did not affect the PK of irinotecan (CYP3A4/UGT1A1 sub-
strate) in six cancer patients. This appears to be consistent with
the low levels of the components with enzyme modulation activ-
ity achieved in vivo. The range of the maximum plasma concen-
tration of silybin was 0.0249 to 0.257 uM [66], which is below the
in vitro inhibition constants of UGT1A1 and CYP3A4.

Modulation of transporters: Recently, many human drug trans-
porters have been identified (Fig. 1S) and P-glycoprotein (P-gp),
expressed by the MDR1 gene, is the best characterized one. P-gp
functions as an efflux transporter in several tissues including the
gastrointestinal tract, liver, kidney, and blood-brain barrier. Inhi-
bition or induction of P-gp (regulated by PXR or CAR [67,68]) by
interacting drugs or botanical constituents may alter drug ADME
resulting in significant pharmacokinetic consequences.

The inductive effect of SJW on P-gp appears to be the mechanism
of interaction with known P-gp substrates. The Cp,,x and/or AUC
values of digoxin [69,70], talinolol [71], and fexofenadine [72]
were decreased after long-term administration of SJW. Suppor-
tive evidence of P-gp induction by longer SJW exposure is based
on studies conducted in vitro [73,74] and in humans [75]. A 1.4-
fold increase in intestinal P-gp expression was observed after a
14-day administration of SJW in healthy volunteers [75]. The in-
duction of P-gp by SJW appears to be mainly attributed to hyper-
forin [74].

Ginkgo biloba extract (120 mg tid for 14 or 28 days) increased the
Cmax and AUC of talinolol in healthy volunteers, probably by inhi-
bition of P-gp-mediated efflux (© Tables 1 and 2) [76,77]. On the
other hand, ginkgo extract (120 mg bid, 28 days or 80 mg tid, 7
days) failed to change the PK of digoxin [78] and fexofenadine
[79]. In Caco-2 cells, ginkgo extract inhibited digoxin efflux with
an ICsq of 24 ng/mL [80], and its flavonoids quercetin, kaempferol,
and isohamnetin were shown to be P-gp substrates with inhibi-
tory and inductive effect on P-gp [81].

Organic anion-transporting polypeptides (OATPs) are a family of
transporters distributed throughout the body, including sites rel-
evant to drug ADME (Fig. 1S). OATPs have been increasingly rec-
ognized by their contribution to drugs pharmacokinetic behavior.
In the small intestine, OATP1A2 and OATP2B1 are the main OATP
transporters.

Suggestion of OATPs inhibition by botanicals is demonstrated by
the 85%, 56%, and 82% decrease of OATP2B1-mediated uptake of
estrone-3-sulfate by ginkgo extract [82], Echinacea purpurea ex-
tract [82], and 5% GFJ [83], respectively, in transfected HEK293
cells. Additional data indicate that flavonoids in GF] may be re-
sponsible for the OATP inhibition. Naringin (50 uM) inhibited
OATP1B1- and OATP1A2-mediated uptake of dehydroepiandros-
terone sulfate [84] and fexofenadine [85], respectively; while its
aglycone naringenin (10-50uM) inhibited OATP1B1- and
OATP2B1-mediated influx of dehydroepiandrosterone sulfate
[84] and glibenclamide [83]. Clinically, the ingestion of naringin
(1210 uM aqueous solution or 1234 uM in GFJ) or GF] resulted in
22 to 42 % reduction in fexofenadine AUC; while a GF] product, re-
ported to be rich in furanocumarins, did not alter fexofenadine
exposure [85]. Other OATP substrates such as etoposide, celipro-
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lol, and aliskiren (© Table 1) had their AUC reduced (between 85-
26%) by the co-intake of GFJ [22].

Metabolism-transport interplay: In a 2007 review, 29% (10 out of
34) of commonly prescribed drugs with clinical evidence of bo-
tanical interaction were identified as substrates of P-gp. These in-
clude cyclosporine, digoxin, fexofenadine, imatinib, indinavir, iri-
notecan, nevirapine, simvastatin, saquinavir, and tacrolimus [10].
Interestingly, except digoxin and fexofenadine, these drugs are al-
so substrates for CYP3A4. Thus, it appears that a dual substrate for
CYP3A4 and P-gp has a much higher potential for interaction
with botanicals. As CYP3A4 and P-gp play a role in limiting drug
bioavailability after oral administration, the interdependence of
metabolism and transport processes may represent a potentially
important mechanism of interaction. The observed decrease of
trough blood concentrations of cyclosporine, in renal or heart
transplant recipients with long-term coadministration of SJW,
appears to be due to an increase in both CYP3A4 activity and
P-gp intestinal efflux. This botanical-mediated PK interaction
was associated with the transplant graft rejection observed in all
reported cases [8,86,87]. Similar mechanism of SJW interaction
was postulated for imatinib [88,89], irinotecan [9], indinavir
[90], and simvastatin [91]. An update of SJW-mediated clinical
drug interactions can be found in comprehensive reviews [92,
93].

The “metabolism-transport interplay” may pose a challenge in
the prediction and assessment of the specific role played by each
of these mechanisms in the altered exposure of coadministered
drugs [94]. For instance, assessment of preclinical and clinical da-
ta of garlic (Allium sativum) CYP3A4 and P-gp modulation raised
the hypotheses of garlic affecting hepatic and intestinal enzyme-
transporter interplay leading to pharmacokinetic interactions. In
vitro, acute exposure of the mixture of constituents of different
garlic formulations (fresh, dried garlic powder, oil, and aged-gar-
lic extract) inhibited CYP3A4 and moderately inhibited P-gp ac-
tivity [25]. Allicin (diallyl thiosulfinate), found in crushed fresh
garlic, inhibited CYP3A4 activity and ritonavir P-gp-mediated ef-
flux in Caco-2 cells [95]; while garlic diallyl sulfide showed no in-
hibitory effect on P-gp [96]. In healthy volunteers, the Cpax, Crin,
and AUC of saquinavir (CYP3A4/P-gp substrate) were reduced
51%, 54%, and 49%, respectively, after garlic use (dried garlic
powder GarliPure®, 4.64 mg allicin and 11.2 mg alliin, bid, 21
days). After a 10-day washout, the Cyax, Cmin, and AUC values
were still at 60-70% of the baseline values [97]. It has been sug-
gested that induction of CYP3A4 and/or P-gp by garlic compo-
nents may represent the underlying mechanism of the altered sa-
quinavir PK. In another interaction study in healthy volunteers,
garlic supplements (using a product from the same manufacturer
and dosing regimen as described above) led to a 15% decrease of
saquinavir AUC [98]. To explore the causal mechanisms, the in-
vestigator further determined the expression of P-gp and CYP3-
A4 proteins in the duodenum and the hepatic CYP3A4 function
(by erythromycin breath test). Garlic administration increased
the intestinal P-gp protein levels by 31%, yet no differences in
the levels of CYP3A4 in the intestine and the CYP3A4 function in
the liver were found. A negative correlation between changes in
duodenal P-gp expression and the bioavailability of saquinavir
was observed. Moreover, garlic did not alter the clearance of the
CYP3A4 substrate simvastatin [98]. No effect on CYP3A4 function,
evaluated by changes in the metabolic ratios of alprazolam [83]
and midazolam [45,46], was also observed with the use of Kwai
garlic supplements (standardized on allicin potential for 14 days)
or garlic oil (5 days), respectively. In contrast, no change of ritona-
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vir exposure was observed after short-term (4 days) consump-
tion of garlic extract (Natural Source Odourless Garlic Life®,
<50ng/g of allicin, 10 mg bid) by healthy volunteers [99].

These results highlight several confounding factors in the inter-
pretation of botanical-drug interaction. First, preclinical models
may not predict clinical outcomes. In vitro, aged-garlic extracts,
low in alliin but rich in flavonoids, reduced saquinavir efflux by
P-gp and/or MRP2 in liver models (HepG2 cells and rat liver sli-
ces) resulting in increased intracellular concentration with oppo-
site effect (increased efflux) for darunavir [100]; whereas aged-
garlic extract increased the efflux of saquinavir and darunavir in
Caco-2 cells but decreased CYP3A metabolism in the rat jejune
[101]. In rats, the administration of garlic oil for 5 days increased
mRNA and protein levels of CYP3A1, CYP1A1, and CYP2B1 [102,
103]. The mechanism may be through activation of rat CAR
[104], which regulates the expression of enzymes and drug trans-
porters (P-gp) in the liver and intestine [33], by diallyl sulfide in
garlic oil [104]. Conversely, exposure of human hepatocytes to
garlic extracts (0-200 pg/mL) had no effect on CYP3A4 activity
[105]. In combination, these results may suggest that there are
interspecies differences in the regulation of CYP3A/P-gp ortho-
logues between rodents and humans [98]. Second, a negative in-
teraction outcome from short-term administration in humans
may not represent what may be observed with prolonged use in
a clinical setting. For example, the duration of garlic therapy in
the ritonavir study (4 days) may have been too short to observe
a significant P-gp inductive effect. Third, the composition of gar-
lic active constituents is highly variable among different formula-
tions (© Fig. 1D) [106, 107]. In addition, extrapolation of the con-
tent of dried garlic powder to fresh garlic is inappropriate as the
biotransformation of allicin from dried garlic supplements is ex-
tremely erratic, with the oral bioavailability of allicin varying be-
tween 5 to 95% among formulations [107]. The formulations used
in the assessment of potential interactions associated with their
components specific activity towards enzymes and transporters
may lead to different modulating effects and ultimately different
in vivo outcomes. The identification and standardization of the
active constituents of botanical products are therefore essential
to the evaluation of botanical-drug interactions.

Additional examples of pharmacokinetic-based interactions as a
result of inhibition or induction of CYP enzymes and/or trans-
porters are listed in © Table 1 (summary of selected clinical stud-
ies can be found in © Table 2). Overall, the presented examples
have demonstrated that botanicals may act as modulators of
drug-metabolizing enzymes and/or transporters and may have
an impact on the PK of coadministered drugs which are mainly
eliminated by the affected enzyme or transporter.

Altered pharmacodynamics

Pharmacodynamic interactions, although less common, can also
occur, resulting in either an augmented or attenuated response.
If the effect of the botanical on the coadministered drug is en-
hanced (e.g., by synergistic or additive effect of the drug and bo-
tanical on the same drug targets), adverse events/toxicity may
occur. By contrast, some botanicals may contain compounds with
antagonistic properties, which are likely to reduce drug efficacy
and cause therapeutic failure.

The most commonly reported pharmacodynamic botanical-drug
interactions involve antithrombotic drugs since many commonly
used botanicals possess anticoagulant, antiplatelet, and/or fibri-
nolytic properties. In a survey of 250 patients using antithrom-
botic therapy, 76 were taking botanical supplements for the last

12 months. Twenty-three were taking one or more of the botani-
cal products - Asian ginseng (Panax ginseng), garlic, and ginkgo -
with eight of those patients being at risk of potential botanical-
drug interactions. Interestingly, 90% (n=225) of the patients did
not disclose the use of botanical supplements to their health care
practitioners [108]. This example highlights the need for better
education and actions to encourage communication among clini-
cians and patients about botanical use.

Botanicals such as Ginkgo biloba have demonstrated the potential
for clinical antiplatelet activity due to the inhibition of platelet
activating factor by ginkgolides [109]. Several patient cases of
spontaneous bleeding (usually intracranial, intra-ocular, or post-
operative) as a result of gingko use alone [110] or potential gink-
go interactions with warfarin and aspirin have been reported
[111]. However, in two clinical trials, ginkgo standardized extract
(EGb 761, 240 mg/day for 7 days or 100 mg/day for 4 weeks)
failed to alter the PK and PD of warfarin in healthy subjects [60],
and in patients stabilized on long-term warfarin [112]. Likewise,
the concomitant use of EGb 761 (300 mg/day, 4 weeks) and aspir-
in did not result in enhanced inhibition of platelet function and
coagulation in elderly patients at risk of cardiovascular disease
[113]. Pharmacodynamic interaction studies of EGb761 with ei-
ther clopidogrel or cilostazol in healthy subjects reported a non-
significant additive effect on antiplatelet activity; although
EGb761 did enhance the bleeding time prolongation effect of cil-
ostazol [114]. It is noteworthy that the systemic levels of ginkgo
active constituents were not provided in the above studies. In a
PK study, the Cyax values of ginkgolide A were 9.4 and 42.9 ng/
mL after oral intake of EGb 761 by elderly (120 mg) and healthy
volunteers (240 mg), respectively; whereas the Cpax values of
ginkgolide B were 6.2 and 18.2 ng/mL in elderly and healthy vol-
unteers, respectively [115]. These systemic levels were lower
than the platelet activating factor-ICsq values of 15.6 and 3.5 pg/
mL of gingkolides A and B, respectively [116]. However, the
marked difference of ginkgolides content among different ginkgo
formulations and commercial products (© Fig. 1C) makes future
extrapolation of clinical outcomes difficult.

The effect of warfarin was decreased by the coadministration of
Asian ginseng (Panax ginseng) [117]. Ginseng has the potential
to interfere with the coagulation cascade and therefore interact
with warfarin. However, no pharmacodynamic interactions with
warfarin and P. ginseng were observed in healthy subjects [42],
patients with cardiac valve replacement [118], or with ischemic
stroke [119]. The use of a different species of Panax, P. quinquefo-
lius (American ginseng), in contrast, reduced the anticoagulant
effect of warfarin in healthy adults [120]. Chemically several dif-
ferences have been demonstrated between P. ginseng and P. quin-
quefolius, including the presence of the active constituents ginse-
noside Rf in P. ginseng versus pseudoginsenoside F11 in P. quin-
quefolius [121]. Variation on total ginsenoside content among dif-
ferent commercial products of P. ginseng was also observed
(CFig. 1E).

Garlic could also potentially increase the effect of anticoagulant
drugs as allicin has demonstrated antiplatelet activity [122]. To
date, two cases have been reported in patients stabilized on war-
farin who experienced doubling of international normalization
ratio (INR) and had an increase in clotting time after garlic con-
sumption (no details on dosing regimen) [123]. Similarly, there
have been several reports of increased INR in patients taking
warfarin and dong quai (Angelica sinensis), which also inhibits
platelet aggregation; though no bleeding episodes were observed
[124].
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Potential pharmacodynamic interactions with antithrombotic
drugs may occur as result of PK modulation. For example, SJW
(300 mg tid, 14 days) increased the platelet inhibition effect of
clopidogrel in hyporesponsive volunteers and patients via induc-
tion of CYP3A4 metabolic activity as measured by the erythromy-
cin breath test [125]. Whether the activity of CYP2C19 was also
modulated by SJW, and the contribution of CYP2C19*2
polymorphism on the response of the studied population were
not evaluated.

While some botanicals have an additive effect on the pharmaco-
logical action of anticoagulants, coenzyme Q10 has demonstrat-
ed an antagonistic interaction with warfarin. A decrease in INR
values below 2 was observed in three elderly patients who were
stabilized on warfarin and concomitantly using 30 mg/day of
coenzyme Q10 (ubidecarenone). The structural similarity of
coenzyme Q10 to vitamin K, may suggest the enhanced coagula-
tion effect of the coenzyme Q10 [126].

Overall, the impact of botanical supplements on normal hemo-
stasis and antithrombotic therapy should be given careful consid-
eration. Gingko and garlic are examples of botanicals in which
precautionary use is recommended in anticoagulants/antiplate-
let drug labels as it might pose an additive risk of bleeding,
whereas ginseng and coenzyme Q10 may have an antagonist ef-
fect [127].

Cases of pharmacodynamic interactions with botanicals and
drugs acting on the central nervous system (CNS) have been
widely reported. For example, concurrent use of SJW, the most
commonly used botanical antidepressant [128], with serotoner-
gic drugs, such as selective serotonin-reuptake inhibitors (e.g.,
sertraline [129], fluoxetine [130], paroxetine [131], and nefazo-
done [132]) and serotonin agonists (e.g., buspirone [133]), caused
manic episode or serotonin syndrome in some patients. The
probable mechanism of interaction was an additive serotonergic
effect due to the inhibitory activity of SJW on serotonin re-uptake
transporters in the CNS [134].

Kava (Piper methysticum), a popular botanical with anxiolytic
and sedative properties, has demonstrated additive effect with
the benzodiazepine levodopa [135]. The observed increase in
the duration and number of “off” periods in Parkinson’s patients
may be attributed to the dopamine antagonistic effect of kava ex-
tract and/or kavalactones [136]. Besides the synergistic effect at
gamma-aminobutyric acid (GABA) receptors, inhibition of drug-
metabolizing enzymes, such as CYP3A4 [137,138] may explain
the enhanced CNS-depressant effect of alprazolam resulting in a
semicomatose state when kava was taken concomitantly [139].
The FDA has issued a consumer advisory about kava use [140] in
the face of safety concerns that have been raised about kava hep-
atotoxicity [141].

Other examples of adverse events as a result of botanicals-CNS
drugs pharmacodynamic interactions include reports of a patient
manic episode after concomitant use of phenelzine and ginseng
[142] and a possible PK/PD interaction of ginkgo with trazodone
which led to an elderly patient’s comatose state [143].

Although most pharmacodynamic interactions reported in the
literature and reviewed in this work focused on adverse events,
not all interactions will result in an undesirable effect. For exam-
ple, investigators of a clinical trial claimed beneficial effects of
milk thistle extract (140 mg tid, 3 months), a strong antioxidant
with iron chelating activity, in combination with desferriox-
amine. The combined botanical-drug therapy was more effective
than desferrioxamine alone in reducing serum ferritin levels in
patients with beta-thalassemia major. It was suggested that sily-
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marin and desferrioxamine could be used safely and effectively in
the treatment of iron-loaded patients [144].

There was also a report of an interaction between chlorpropa-
mide and karela (Momordica charantia), a fruit widely consumed
in Asia, Africa, and the Caribbean and used for management of
type 2 diabetes mellitus as an Ayurvedic medicine. A patient
whose blood glucose levels was poorly controlled when taking
chlorpropamide alone, experienced a better outcome with coad-
ministered karela [145]. Many botanicals such as Salacia oblonga
[146] and Cajanus cajan [147] have shown hypoglycemic effects
in animal models and in a limited number of studies in healthy
adults. Since hypoglycemic agents tend to have additive effects
when taken concomitantly, the potential for interaction affecting
diabetic control and resulting in serious adverse events is high.
The clinical implications of any drug interactions depend on a va-
riety of patient-dependent factors such as age, sex, nutrition hab-
its, health status, genetic factors and metabolizing capacity, coad-
ministered drugs and applied dosage regimens. Botanical- de-
pendent factors include the species, dosing regimen, and compo-
sition of active constituents [148]. Nonetheless, altered pharma-
cokinetics almost inevitably leads to a significant change in re-
sponse of a narrow therapeutic index-drug possibly resulting in
serious or life-threatening adverse effects.

Evaluating Botanical-Drug Interaction

v

Considerable effort has been focused on understanding and pre-
dicting the modulation of enzymes and transporters in vivo. A
collection of gene- and protein-based assays has been used to
identify the specific phase I/Il enzymes and transporters involved
in drug ADME, and ultimately, predict potentially significant drug
interactions. Identification of the extent of metabolism by a spe-
cific enzyme and its affinity by a specific transporter is required
for all new drugs by the FDA. In addition, the potency of enzyme
inhibition or induction and transporter inhibition is required to
be quantified [149]. These in vitro techniques may also be useful
to provide mechanistic information and better characterize the
active components of botanicals that have potential for drug in-
teraction.

In silico mechanistic models, such as physiologically-based phar-
macokinetic (PBPK), may be a useful tool for the prediction of po-
tential botanical-drug interactions and evaluation of various clin-
ical situations, including the existence of multiple patient factors
(complex scenarios) such as genetic polymorphisms of certain
metabolizing enzymes and disease states. PBPK simulations may
also offer valuable insight into optimizing the design of interac-
tion trials. Besides in vitro drug interaction data, sufficient infor-
mation of clinical pharmacology (e.g., ADME) of both the victim
drug and the enzyme/transporter modulators of botanicals need
to be collected to develop PBPK models [150]. One example of
PBPK application in this area is the investigation of GJF-mediated
interactions with CYP3A substrates. The impact of intestinal
CYP3A inhibition by GF] 6',7'-dihydroxybergamottin on the
first-pass elimination of midazolam and simvastatin has been
predicted by PBPK simulations [151].

Animal models (e.g., normal, transgenic, or humanized animals)
are widely used and may also provide valuable information re-
garding the potential for in vivo botanical-drug interactions.
However, animal studies alone are not predictive of human inter-
actions because of species differences in pharmacokinetics, sub-
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strate metabolic routes and rates, proteins specificity, and inhib-
itor selectivity [152].

Well-designed clinical studies using specific CYP and P-gp probes
[149] in healthy volunteers or patients may generate the most
clinically relevant interaction data. Trials using CYP probe cock-
tails have been explored to efficiently quantify the potential for
interactions. Several botanicals have been evaluated in this fash-
ion, including Echinacea [153], saw palmetto (Serenoa repens)
[153], SJW [45,52], kava [29], goldenseal [29], black cohosh [29],
garlic [46,154], valerian [29], and ginkgo [45] (© Tables 1 and 2).

Challenges of predicting botanical-drug interaction

Lack of standardization of the active constituents: Unlike chemi-
cally defined drugs, botanicals are mostly complex mixtures of
multiple active constituents with potentially different, and often
unknown, mechanisms of action and modulating effects on en-
zymes and transporters. An array of intrinsic (e.g., plant species,
organ specificity, seasonal variation) and extrinsic (e.g., environ-
ment and cultivation methods, manufacturing processes, con-
tamination) factors greatly define botanical products composi-
tion and quality. It has been demonstrated, for example, that the
content of malonyl ginsenosides in the same sample of Panax gin-
seng roots ranged from 0% to 1.35% using different extraction
methods and decreased with increasing storage time. Additional-
ly, the total ginsenosides were underestimated and determined
imprecisely by ignoring the presence of malonyl ginsenosides
[155]. The concentration variability of the marker constituents
(i.e., chemically based standardization) of commonly used botan-
icals in the US from different formulations, manufacturers, or
even batch-to-batch is illustrated in © Fig. 1. Similarly, in a study
commissioned by the FDA in 1999, only 46% and 12-24% of bo-
tanical products and extracts, respectively, were consistent with
the ingredients listed in the label [156].

To mitigate botanical product quality issues, as of June 2010,
manufacturers and distributors in the US are required to manu-
facture, label and store products in compliance with good manu-
facturing practices [157]. One hundred percent identity testing of
components is required, unless an exemption is granted based on
data that showed that less than 100% identity testing will not di-
minish the assurance of correct components [158]. The FDA will
also inspect manufacturing facilities and carefully monitor pro-
duction and labeling to ensure that the product is packaged and
labeled as specified in the master manufacturing record [157].
While GMP protocols will provide at least that a predetermined
amount of a marker constituent is present in each botanical prod-
uct from the same manufacturer, one specific product may have a
different profile of constituents than another from a different
source (O©Fig.1) given the poorly standardized manufacturing
process among producers. Therefore, extrapolation of scientific
data or findings is difficult or even impossible.

Furthermore, the presence of specific concentrations of marker
compounds may not guarantee enzyme/transporter modulation
or pharmacologic activity. For example, commercially available
SJW products used in most clinical studies are usually standard-
ized to a fixed content of hypericin (© Fig. 1B); however, hyper-
forin is the active constituent responsible for CYP3A4 induction
[35,36]. Different commercial preparations and dry extracts of
SJW showed diverse PXR-mediated induction of CYP3A4, with
enzyme induction magnitude being correlated to the content of
hyperforin in the extract, but not hypericin and flavonoids
[159]. Moreover, SJW extracts with low hyperforin content (less
than 1 mg daily) have not demonstrated any clinically relevant

interactions, including with CYP3A4 and P-gp drug substrates
[51,160-163]. As demonstrated in ©Fig.1B, the measured
amounts of hypericin and hyperforin varied considerably among
different manufacturers.

For effective botanical-drug interaction evaluation in clinical set-
tings, researchers must be aware of the aforementioned quality
issues. Proper identification of the botanical (Latin binomial and
authority) and the part(s) used in the preparation of the product
including the processes used to extract and isolate the purported
active constituents is the first step to ensure some minimal char-
acterization of botanical products and define a potential botani-
cal-drug interaction [164]. The content of the purported perpe-
trator(s) of interaction in the formulation and its systemic expo-
sure should be measured whenever possible.

Extrapolation of results from in vitro studies: Prediction of the in
vivo modulation effect of botanical products from in vitro data is
usually problematic. Besides the multiplicity of constituents at
variable concentrations as discussed above, the poor and/or vari-
able absorption of the active inhibitor(s)/inducer(s) may lead to
different in vivo effects. For instance, the effect of milk thistle
(standardized seeds extract contains at least 30-65% flavonolig-
nans including the active constituents silybin A and B collectively
known as silymarin) on several enzymes and transporters has
shown a conflicting in vitro/in vivo correlation. While a dose-de-
pendent inhibitory effect of silymarin or silybin on various CYP
isoforms, including CYP3A4 (K; range =5-160 uM) and CYP2C9
(K; range = 5-19 uM) was observed in several in vitro studies [17,
165-167], the PK of CYP3A4 substrates nifedipine [168] and mid-
azolam [153] were not affected by silymarin co-treatment
(560 mg/day for 1 day and 175 mg of standardized extract to
80% silymarin, bid, 28 days, respectively) in healthy volunteers.
On the contrary, a CYP2C9 genotype-dependent interaction be-
tween losartan (CYP2C9/CYP3A substrate) and silymarin
(420 mg/day for 14 days) was demonstrated [169]. Regarding
transport modulation, silymarin (50 uM) decreased [*H] dehy-
droepiandrosterone (DHEA) uptake in OATP-B1-expressing cells
[84] and increased the intracellular accumulation of [*H] dauno-
mycin (P-gp substrate) and mitoxantrone (BCRP substrate) in
P-gp- [170] and BCRP- [171] overexpressing cells; although sily-
marin (7 pg/mL-2 ng/mL of silybin) had no effect on P-gp activity
in Caco-2 cells [28]. In healthy volunteers, on the other hand, no
changes in the PK of rosuvastatin (OATP1B1/BCRP substrate; not
extensively metabolized) were observed with silymarin cotreat-
ment (520 mg/day for 3 days) [172]. Likewise, silymarin did not
alter the PK of digoxin [173] (900 mg/day for 14 days) and the du-
al CYP3A4/P-gp substrates indinavir [174-176] and ranitidine
[177], while the oral clearance of metronidazole and its major
metabolite was increased by 30% and Cpax and AUC decreased
by silymarin coadministration (140 mg/day for 9 days) [178]. This
discrepancy may be caused by the low bioavailability (~1%) of
the commercially available formulations of milk thistle [179,
180] used in the clinical studies. As such, sufficient systemic con-
centrations of the inhibitors (active flavonolignans) may not be
reached. For instance, the maximum plasma concentration of to-
tal (free and conjugated) silybin achieved after ingestion of
600 mg milk thistle extract (57% silybin) was around 0.4 M
[181] which is below the lower end of the inhibition constants
of CYP2C9 and CYP3A4 (Ki=5pM) [17,165-167]. Additionally,
the oral bioavailability of flavonolignans is highly variable [180].
Potential inter-product variation of the active constituents may
also occur, which can confound the interpretation of study re-
sults.
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Differential effect on intestinal and hepatic CYP3A: The potential
for a differential effect of a botanical constituent on intestinal
and hepatic CYP3A makes the prediction of botanical interactions
with CYP3A substrates difficult. For instance, the activity of
CYP3A at intestinal and hepatic sites was selectively modulated
by Echinacea purpurea (400 mg, qid, 8 days) in healthy subjects.
The intestinal availability of oral-administered midazolam was
increased by 85% as result of inhibited intestinal CYP3A, but the
oral clearance was not altered. Conversely, the systemic clearance
of intravenous midazolam, a reflection of hepatic CYP3A activity,
was increased by 34% [182]. A subsequent trial reported no effect
of E. purpurea (1600 mg/day) on the activity of CYP3A with the
probe midazolam dosed orally [153]. Therefore, the prediction
of whether Echinacea interaction will result in inhibition or in-
duction of CYP3A activity will be dependent on the hepatic and
intestinal extraction ratios of the interacting CYP3A substrate
[182]. For instance, drugs with minimal first-pass metabolism
may demonstrate an increased oral clearance due to the induc-
tion of hepatic CYP3A; whereas drugs with high first-pass elimi-
nation may demonstrate increased exposure (Cpax and/or AUC)
due to the inhibition of intestinal CYP3A.

Single-dose administration vs. multiple dosing: Because of the bi-
phasic effect of some botanicals, results from single-dose studies
may be different from chronic dosing, as exemplified by several
reported interactions indicating that inhibition and induction
mechanisms depend on the exposure time. For example, differ-
ential SJW effects on CYPs and/or P-gp between short-time (1-3
days) versus chronic administration (>14 days) have been ob-
served [183]. While SJW (900 mg/day) did not alter the pharma-
cokinetics of the CYP3A4 probes midazolam [50] and alprazolam
[184] when administered to healthy volunteers for 2 or 3 days,
respectively, the oral clearance of midazolam was increased after
14 days administration (900 mg) [50,185]. Another example, a
43% reduction of voriconazole AUC (CYP2C19/CYP2C9/CYP3A4
substrate) was observed after SJW exposure (300 mg extract) for
15 days, whereas short-term dosing resulted in a 22 % increase of
voriconazole AUC [58]. Similar effect is observed in regard to SJW
modulation of P-gp. A single dose of SJW (Sundown®, 900 mg) in-
creased Cpax and decreased CL/F of fexofenadine by 45% and 20%,
respectively, indicating an inhibition of intestinal P-gp activity;
while the long-term administration of SJW (900 mg/day, 14 days)
did not alter fexofenadine disposition relative to an untreated pe-
riod [72]. Conversely, in another study with the same SJW dose
(Jarsin 300 ®900 mg/day, 14 days) a 35% decrease in Cyax and
47% increase in CL/F of fexofenadine was observed, possibly as a
result of P-gp induction [186].

Effect of patient-intrinsic factors: Patient-related factors including
genetic polymorphisms of CYPs and genes that encode trans-
porters, such as MDR1 for P-gp, may contribute to the net out-
come of a drug interaction. As such, botanical-drug interactions
via metabolic or transport pathways also have the potential to
be influenced by genetic factors. Genetic information has been
incorporated in study designs to explore the interplay of genetic
polymorphisms and combined use of botanical products. For ex-
ample, the technique of gene expression profiling in rodent liver
has been applied to identify the genetic mutations in metabolic
pathways influenced by botanicals and facilitate more precise
targeting of human studies [187]. Pharmacogenomic studies in
humans may help to identify the interactions which may be more
pronounced or only occur in specific groups of subjects. For ex-
ample, the effects of coadministered milk thistle extract
(420 mg/day of silymarin, 14 days) on the PK of losartan
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(CYP2C9/CYP3A substrate) and its active metabolite E-3174 were
investigated in CYP2C9 genotyped healthy men. In both CYP2C9
wild-type and CYP2C9*1/*3 carriers, silymarin decreased the
AUC of E-3174 while increasing the AUC of losartan. The losartan
metabolic ratio was reduced in CYP2C9 wild-type subjects but
not in those with CYP2C9*1/*3 genotype. Thus, silymarin inhib-
ited the metabolism of losartan to E-3174, and the magnitude of
the interaction was dependent on CYP2C9 genotype [169]. Like-
wise, ginkgo has demonstrated modulation of CYP2C19 expres-
sion and activity in a genotype-dependent manner [188] (© Ta-
ble 2).

Botanical Products: Regulatory Perspectives

v

In the United States, most botanicals are sold as dietary supple-
ments. The 1994 Dietary Supplement Health and Education Act
(DSHEA) provides regulatory framework for the safety and label-
ing of dietary supplements [189], defined as products taken by
mouth that contain a “dietary ingredient” intended to supple-
ment the diet. Dietary ingredients include herbs or other botani-
cals, vitamins, minerals, and amino acids. For a new dietary in-
gredient (NDI), a pre-market review of safety data is required by
law [189]; otherwise, manufactures are exempted to provide the
FDA with the evidence it relies on to substantiate safety or effec-
tiveness. The majority of FDA's efforts related to dietary supple-
ment safety are focused on the post-marketing period as post-
marketing surveillance is mandatory under the 2006 Dietary
Supplement and Nonsprescription Drug Consumer Protection
Act [190]. By law, manufactures and distributors of dietary sup-
plements are required to record and report to the FDA (Med-
Watch program-form 3500A), in a timely manner, information
about serious adverse events associated with the use of their
products that are reported directly to them [190]. The FDA Ad-
verse Event Reporting program, mandatory and voluntary (by
consumers and practitioners), provides initial signaling of safety
issues, including the occurrence of drug interactions with botan-
ical products. Additional clinical and scientific information are
further compiled to serve as the basis of FDA risk mitigation ac-
tions, which includes education of the public and labeling lan-
guage on prescription drug products [149,191].

To address practitioners and consumers concerns about the qual-
ity of dietary supplements, good manufacturing practice regula-
tions were established in 2007 and became effective in 2010.
Manufactures and distributors must comply with the Current
Good Manufacturing Practices (cGMPs) in Manufacturing, Pack-
aging, Labeling, or Holding Operations for Dietary Supplements
[157] by adhering to a specific set of manufacturing processes,
safety procedures, and packing and labeling standards to guaran-
tee the identity, purity, strength, and composition of dietary sup-
plements.

In 2004, the FDA published the guidance “Botanical Drug Prod-
ucts” to facilitate and encourage development of “new botanical
drug products” [192]. The guidance describes the requirements
of appropriateness of clinical efficacy and safety data, and of clin-
ical pharmacology investigations including bioavailability and in-
teractions between botanicals and commonly used drugs and/or
dietary supplements. Chemistry/Manufacturing control proce-
dures are also recommended. To the end of 2008, a total of 350
pre-investigational and investigational new drug applications of
botanical drug products had been submitted to the Agency [193].
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Botanical-drug interaction: labeling implications
Regulations of prescription drug labeling requires that drugs or
food that interact in clinically significant ways with the product
should be referenced in the “Highlights — Drug Interactions” sec-
tion of its labeling [191]. Depending on the potential clinical con-
sequences of an interaction, essential information for health care
practitioners may be stated in the “Drug Interactions”, “Dosage
and Administration”, “Contraindications”, “Warnings and Pre-
cautions”, and “Clinical Pharmacology” sections of the prescrip-
tion drug label. Additionally, the 2012 FDA draft-guidance en-
titled “Guidance for industry: Drug interaction studies - study
design, data analysis and implications for dosing and labeling”
proposed a classification system for CYP inhibitors and inducers
in the labeling, in an effort to improve the consistency of labeling
language [149].

Labeling decisions for interactions with SJW or GFJ can be based
on the metabolic and dispositional characteristics of the drugs
being labeled without conducting actual in vivo studies to charac-
terize the interaction. For example, if a drug is a substrate for ei-
ther CYP3A or P-gp, or both, and modulation (induction) of these
pathways may significantly decrease drug systemic exposure and
effectiveness, cautions regarding the use of SJW are added to the
label. Representative examples of drugs with labeling warnings
about SJW use are listed in Table 1S. If a CYP3A substrate drug al-
so has a low oral bioavailability because of extensive first-pass
metabolism by intestinal CYP3A4, warnings regarding concomi-
tant ingestion of grapefruit juice may be added to the label, de-
pending on the drug’s exposure-response relationship. For exam-
ple, labeling for simvastatin and dasatinib carry warnings about
GFJ use (Table 1S). Additionally, some SJW products carry warn-
ing language about potential drug interactions (Table 2S).

Conclusions and Future Perspectives

v

Drug interactions with botanicals have been increasingly re-
ported. Timely identification of drugs that may interact with bo-
tanical’s active constituents and the mechanism involved is es-
sential for better clinical risk assessment. Researchers and manu-
facturers of botanical products are encouraged to fully apply the
available guidelines and tools to evaluate potential botanical-
drug interactions. Meaningful botanical-drug interaction moni-
toring should take into account inherent quality issues of botani-
cals, patient factors, and clinical experimental design. To better
translate information into practice, regulations on prescription
drug labeling content and format were set in place to highlight
key drug interactions. New drugs that are CYP3A and/or P-gp
substrates have higher potential for drug interactions, which
may lead to labeling language regarding concomitant use with
botanicals such as St. John’s wort and grapefruit juice. Another
risk management strategy includes mandatory reporting by
manufacturers and distributors of any serious adverse events as-
sociated with the use of their botanical products. Assurance of
product quality is enforced by the recent implemented cGMP
regulations for dietary supplements. Strategies to strengthen
knowledge and to facilitate communications among patients
and clinicians about botanicals and potential interactions are also
encouraged. With continued improvement in our understanding
of the mechanism of drug interactions, the risks associated with
such can be better predicted, evaluated and managed, in order to
reduce the propensity of clinical significant adverse interactions.

Supporting information

Tables summarizing labeling examples of drug interactions in-
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