Placement of an esophageal self-expandable metal stent through a percutaneous endoscopic gastrostomy tract, for endoscopic therapy of upper gastrointestinal bleeding

Slim endoscopes can be passed through gastrostomy tracts, but dilation is required for the passage of standard endoscopes, which may result in tract disruption. Large-diameter covered self-expandable metal stents (CSEMS) have been placed through percutaneous tracts to enable endotherapy.

A 20-year-old man underwent complex thoraco-abdominal surgery following traumatic injury, resulting in a cervical esophagus that was disconnected from the remaining gut. Intermittent bleeding from a gastrojejunal anastomotic ulcer was diagnosed using slim (5.9-mm) endoscopes passed through a 20-Fr mature percutaneous endoscopic gastrostomy (PEG) tract, but the small working channel precluded passage of hemostatic accessories. Attempts at angiographic embolization were unsuccessful.

An innovative endoscopic approach was undertaken to manage recurrent massive bleeding (Figs. 1–6, Videos 1–3). With the patient under general anesthesia, the gastrostomy tube was removed and an ultrathin endoscope (Olympus GIF-XP160; Olympus, Tokyo, Japan) was advanced through the gastrostomy tract toward a 2-cm marginal ulcer with a visible vessel. After guide wire placement into the jejunum, and endoscope withdrawal, a 7-cm long, 18-mm diameter CSEMS (Alimaxx; Merit Endotek, Jordan, Utah, USA) was deployed across the PEG tract, with one end exiting the skin and the other intragastrically. Balloon dilation (18-mm ATLAS PTA Dilatation Catheter; BARD Peripheral Vascular Inc., Tempe, Arizona, USA) was used to expand the stent to 18 mm. The stent was then retrieved over a larger bore (26-Fr) gastrostomy tube with an internal balloon bumper placed through the stent into the stomach.

Fig. 1 Esophageal self-expandable metal stent (SEMS) deployed across percutaneous endoscopic gastrostomy (PEG) site.

Fig. 2 Dilation of transgastric self-expandable metal stent (SEMS) to 18 mm using a peripheral vascular dilating balloon with high burst pressure.

Fig. 3 Fluoroscopic view of transgastric passage of an adult (9.8-mm diameter) upper endoscope through the self-expandable metal stent (SEMS) (thin arrow) to the site of a bleeding anastomotic ulcer (thick arrow).

Fig. 4 Gastrojejunal anastomotic ulcer with visible vessel (arrow) targeted with 7-Fr bipolar thermal probe.

Fig. 5 Longitudinal scissor sectioning and retrieval of self-expandable metal stent (SEMS) (thin arrow) over larger bore (26-Fr) gastrostomy tube (thick arrow) with internal balloon bumper placed through the SEMS into the stomach.

Fig. 6 Replacement of percutaneous endoscopic gastrostomy (PEG) tube with larger bore (26-Fr) gastrostomy tube.
Temporary placement of a large-diameter CSEMS through percutaneous access tracts enables passage of large-diameter endoscopes for performance of endotherapy. Although the PEG tract could have been dilated, this can result in tract disruption. We foresee increasing use of the percutaneous CSEMS-assisted endoscopic approach for several indications and locations.

Endoscopy_UCTN_Code_TTT_1AO_2AZ

Competing interests: None

T. H. Baron, L. M. Wong Kee Song
Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA

References
1 Baron TH, Vickers SM. Surgical gastrostomy placement as access for diagnostic and therapeutic ERCP. Gastrointest Endosc 1998; 48: 640–641
3 Bakken JC, Baron TH. Pancreatic necrosectomy via percutaneous self-expandable metal stent placement. Gastrointest Endosc 2011; 73: AB103
4 Bakken JC, Baron TH. Use of partially covered and fully covered self expandable metal stents to establish percutaneous access for endoscopic necrosectomy. Endoscopy 2011; 43: A69

Video 1
Esophageal self-expandable metal stent (SEMS) placement across percutaneous endoscopic gastrostomy (PEG) site.

Video 2
Passage of an adult (9.8-mm diameter) upper endoscope through the transgastric self-expandable metal stent (SEMS) for ulcer hemostasis.

Video 3
Removal of transgastric self-expandable metal stent (SEMS) and replacement of percutaneous endoscopic gastrostomy (PEG) tube with larger bore (26-Fr) gastrostomy tube.

Bibliography
DOI http://dx.doi.org/10.1055/s-0032-1309850
Endoscopy 2012; 44: E319–E320
© Georg Thieme Verlag KG Stuttgart · New York ISSN 0013-726X

Corresponding author
T. H. Baron, MD
200 First Street SW
Rochester
MN 55905
USA
Fax: +1-507-255-7612
baron.todd@mayo.edu