Ultraschall Med 2012; 33(4): 357-365
DOI: 10.1055/s-0031-1299128
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Sonografische Mikrokalkdetektion – Potenzial einer neuen Methode

Sonographic Detection of Microcalcifications – Potential of New Method
T. Fischer
1   Institut of Radiology and Ultrasound Research Laboratory, Charité – Universitätsmedizin Berlin
,
M. Grigoryev
1   Institut of Radiology and Ultrasound Research Laboratory, Charité – Universitätsmedizin Berlin
,
S. Bossenz
2   Department of Obstetrics and Gynaecology and Ultrasound Research Laboratory, Charité – Universitätsmedizin Berlin
,
F. Diekmann
1   Institut of Radiology and Ultrasound Research Laboratory, Charité – Universitätsmedizin Berlin
,
U. Bick
1   Institut of Radiology and Ultrasound Research Laboratory, Charité – Universitätsmedizin Berlin
,
T. Slowinski
3   Department of Nephrology, Charité – Universitätsmedizin Berlin
,
A. Thomas
2   Department of Obstetrics and Gynaecology and Ultrasound Research Laboratory, Charité – Universitätsmedizin Berlin
› Author Affiliations
Further Information

Publication History

08 July 2011

13 December 2011

Publication Date:
09 February 2012 (online)

Zusammenfassung

Ziel: Ermöglicht die erleichterte Mikrokalkdetektionsmethode (EMD) die sonografische Mikrokalkdarstellung an stereotaktisch gewonnenen Mammastanzzylindern im Vergleich zur Mammografie?

Material und Methoden: In einer prospektiv randomisierten Studie wurden 105 stereotaktisch gewonnen Stanzzylinder mammografisch und sonografisch untersucht. Die EMD-Methode, integriert in ein High-end-Ultraschallsystem, bestand aus 3 Einstellungsstufen (0 – 2 blau, 3 – 5 violett und 6 – 8 schwarz-weiß, 14 MHz). Die Anzahl der Mikroverkalkungen pro Stanze wurde für beide Verfahren bestimmt. Die EMD-Bildqualität konnte auf einer Skala von 1 – 9 beurteilt werden. ANOVA und Post-Hoc nach Sidak, Regressionsanalyse nach Pearson (r) und Spearmansche Rangrelationskorrelation (rho) wurden ermittelt. Der Intraklassen-Korrelationskoeffizient (ICC) wurde berechnet und eine ROC-Analyse durchgeführt.

Ergebnisse: Die blaue Farbmappe 1 wurde mit 1,5 ± 0,7 (MW) am besten bewertet (p< 0,05 im Vergleich zu schwarz-weiß und violett). Bei einer guter Korrelation der Verfahren (r = 0,708 und rho = 0,694) lag die Anzahl der erkannten Mikroverkalkungen pro Stanze bei 3,5 ± 3,1 sonografisch und 4,3 ± 4,8 mammografisch (p> 0,05). Der ICC zeigte mit 0,773 eine nur geringe Abweichung der Verfahren. Basierend auf dem histologischen Nachweis der Verkalkungen war die Mammografie der Sonografie in der ROC-Analyse überlegen (AUC = 0,837 vs. AUC = 0,728).

Schlussfolgerung: Die sonografische Mikrokalkdetektion mittels EMD-Methode korreliert gut mit der digitalen Mammografie an stereotaktisch gewonnenen Stanzen. Die Verfahren weichen gering zugunsten der Mammografie voneinander ab.

Abstract

Purpose: Does the easier microcalcification detection (EMD) method enable sonographic visualization of microcalcifications in breast core biopsy specimens compared with mammography?

Materials and Methods: In a prospective randomized study, 105 core biopsy specimens obtained with stereotactic guidance were examined by mammography and ultrasound. EMD is integrated in a high-end ultrasound system and uses three level settings (0 – 2 blue, 3 – 5 violet, and 6 – 8 black-and-white; 14 MHz). Detection of microcalcifications per core specimen was determined for ultrasound and mammography. EMD image quality was rated on a scale of 1 – 9. ANOVA and Sidak post-hoc testing, Pearson regression analysis (r), and Spearman rank correlation (rho) were performed. The intraclass correlation coefficient (ICC) was calculated, and an ROC analysis was conducted.

Results: The blue color map 1 was assigned the highest mean score of 1.5 ± 0.7 (p< 0.05 compared with black-and-white and violet). There was good correlation between the two modalities (r= 0.708 and rho= 0.694) with detection of 3.5 ± 3.1 microcalcifications per specimen by ultrasound versus 4.3 ± 4.8 by mammography (p> 0.05). The ICC of 0.773 indicates little disagreement between the two modalities. ROC analysis showed mammography to be superior to ultrasound compared with histological detection of microcalcifications (AUC= 0.837 vs. AUC= 0.728).

Conclusion: Sonographic detection of microcalcifications in stereotactic biopsy specimens using the EMD method correlates well with digital mammography. Mammography is slightly superior.

 
  • Literatur

  • 1 Sickles EA. Mammographic features of 300 consecutive nonpalpable breast cancers. Am J Roentgenol 1986; 146: 661-663
  • 2 Kang SS, Ko EY, Han BK et al. Breast US in patients who had microcalcifications with low concern of malignancy on screening mammography. Eur J Radiol 2008; 67: 285-291
  • 3 Moon WK, Im JG, Koh YH et al. US of mammographically detected clustered microcalcifications. Radiology 2000; 217: 849-854
  • 4 Balu-Maestro C, Chapellier C, Ben Taaritt I et al. Ultrasound examination of breast microcalcifications: luxury or necessity?. J Radiol 2006; 87: 1849-1858
  • 5 Huang CS, Wu CY, Chu JS et al. Microcalcifications of non-palpable breast lesions detected by ultrasonography: correlation with mammography and histopathology. Ultrasound Obstet Gynecol 1999; 13: 431-436
  • 6 Soo MS, Baker JA, Rosen EL. Sonographic detection and sonographically guided biopsy of breast microcalcifications. Am J Roentgenol 2003; 180: 941-948
  • 7 Yang WT, Suen M, Ahuja A et al. In vivo demonstration of microcalcification in breast cancer using high resolution ultrasound. Br J Radiol 1997; 70: 685-690
  • 8 Kasumi F. Can microcalcifications located within breast carcinomas be detected by ultrasound imaging?. Ultrasound Med Biol 1988; 14 (Suppl. 01) 175-182
  • 9 Kolb TM, Lichy J, Newhouse JH. Radiology. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 2002; 225: 165-75
  • 10 Thomas A, Filimonow S, Slowinski T et al. Steigerung der Bildqualität bei der Dignitätsbeurteilung mammasonografischer Herde mittels Frequenz-Compounding. Ultraschall in Med 2007; 28: 387-339
  • 11 Teh WL, Wilson AR, Evans AJ et al. Ultrasound guided core biopsy of suspicious mammographic calcifications using high frequency and power Doppler ultrasound. Clin Radiol 2000; 55: 390-394
  • 12 Gufler H, Buitrago-Téllez CH, Madjar H et al. Ultrasound demonstration of mammographically detected microcalcifications. Acta Radiol 2000; 41: 217-221
  • 13 Madjar H, Ohlinger R, Mundinger A et al. BI-RADS-analogue DEGUM criteria for findings in breast ultrasound – consensus of the DEGUM Committee on Breast Ultrasound. Ultraschall in Med 2006; 27: 374-379
  • 14 Wojcinski S, Farrokh A, Weber S et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall in Med 2010; 31 (05) 484-491
  • 15 Adamietz BR, Meier-Meitinger M, Fasching P et al. New diagnostic criteria in real-time elastography for the assessment of breast lesions. Ultraschall in Med 2011; 32 (01) 67-73
  • 16 Fischer T, Peisker U, Fiedor S et al. Significant Differentiation of Focal Breast Lesions: Raw Data-Based Calculation of Strain Ratio. Ultraschall in Med 25.05.2011; . [Epub ahead of print]
  • 17 Thomas A, Filimonow S, Slowinski T et al. Steigerung der Bildqualität bei der Dignitätsbeurteilung mammasonografischer Herde mittels Frequenz-Compounding. Ultraschall in Med 2007; 28: 387-393
  • 18 http://www.awmf.org/leitlinien/detail/ll/032-045OL.html
  • 19 Fischer T, Filimonow S, Taupitz M et al. Bildqualität und Detektion pathologischer Prozesse im Ultraschallbild: Vergleich von B-Bild-Sonographie mit photopischer Bildgebung und harmonischer Bildgebung einzeln und in Kombination. Fortschr Röntgenstr 2002; 174: 1313-1317
  • 20 Tu H, Zagzebski JA, Gerig AL et al. Optimization of angular and frequency compounding in ultrasonic attenuation estimations. J Acoust Soc Am 2005; 117: 3307-3318
  • 21 Roy C, Buy X, Lang H et al. Contrast enhanced color Doppler endorectal sonography of prostate: efficiency for detecting peripheral zone tumors and role for biopsy procedure. J Urol 2003; 170: 69-72
  • 22 Stöblen F, Landt S, Köninger A et al. Nachweis von Mikrokalk durchhochauflösende B-Mode-Sonographie bei BI-RADS-4a-Patientinnen. Gynakol Geburtshilfliche Rundsch 2009; 49: 292-298
  • 23 Nagashima T, Hashimoto H, Oshida K et al. Ultrasound Demonstration of Mammographically Detected Microcalcifications in Patients with Ductal Carcinoma in situ of the Breast. Breast Cancer 2005; 12: 216-220
  • 24 Sickles EA. Mammographic detectability of breast microcalcifications. Am J Roentgenol 1982; 139: 913-918
  • 25 de Paredes ES, Abbitt PL, Tabbarah S et al. Mammographic and histologic correlations of microcalcifications. Radiographics 1990; 10: 577-589
  • 26 http://www.medical.toshiba.com/downloads/NC351.pdf
  • 27 http://www.toshiba-medical.co.jp/tmd/english/library/pdf/TMR-0808-1_MicroPure.pdf
  • 28 Bagnall MJ, Evans AJ, Wilson AR et al. When have mammographic calcifications been adequately sampled at needle core biopsy?. Clin Radiol 2000; 55: 548-553
  • 29 D’Orsi CJ, Reale FR, Davis MA et al. Breast specimen microcalcifications: radiographic validation and pathologic-radiologic correlation. Radiology 1991; 180: 397-401
  • 30 Tse GM, Tan PH, Cheung HS et al. Intermediate to highly suspicious calcification in breast lesions: a radio-pathologic correlation. Breast Cancer Res Treat 2008; 110: 1-7