Am J Perinatol 2012; 29(02): 71-78
DOI: 10.1055/s-0031-1295645
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Maternal Microchimerism in Hirschsprung’s Disease

Autumn S. Kiefer
1   Department of Pediatric and Adolescent Medicine;
,
Tara R. Lang
1   Department of Pediatric and Adolescent Medicine;
,
Molly S. Hein
1   Department of Pediatric and Adolescent Medicine;
,
Kelly T. McNallan
1   Department of Pediatric and Adolescent Medicine;
,
Christopher R. Moir
2   Department of Surgery, Division of Pediatric Surgery, Mayo Clinic, Rochester, Minnesota.
,
Ann M. Reed
1   Department of Pediatric and Adolescent Medicine;
› Author Affiliations
Further Information

Publication History

16 January 2011

11 July 2011

Publication Date:
21 November 2011 (online)

Abstract

Hirschsprung’s disease (HD) presents with severe constipation due to absent ganglion cells in the distal rectum. We sought to determine whether maternal chimeric cells are present in aganglionic bowel. We hypothesize that chimeric cells are part of the unfavorable microenvironment that leads to the destruction of enteric neurons in HD. Intestinal biopsies and resections from seven male patients with HD were compared with four male patients with chronic constipation and six with bowel atresia. Fluorescence in situ hybridization was used to identify chimeric cells based on male/female (XX/XY) differences. The location and immunophenotype of chimeric cells were also studied. Chimeric cells were present more often in the small intestine and rectum, compared with the appendix and colon. Patients with HD had a greater number of chimeric cells per 10× magnification field than patients with chronic constipation or congenital atresia. Chimeric cells were predominantly in the submucosa and outer longitudinal muscle layer in HD. Immunophenotyping identified over 40% of chimeric cells as inflammatory. Chimeric cells are present in greater numbers in aganglionic bowel than in other disorders. Clustering of chimeric cells in areas of absent ganglia lends support to the proposed role of maternal microchimerism in allo-autoimmune responses.

 
  • References

  • 1 Lo YM, Lo ES, Watson N , et al. Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood 1996; 88: 4390-4395
  • 2 O’Donoghue K, Choolani M, Chan J , et al. Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 2003; 9: 497-502
  • 3 Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 1996; 93: 705-708
  • 4 Nelson JL, Furst DE, Maloney S , et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 1998; 351: 559-562
  • 5 Jimenez SA, Artlett CM. Microchimerism and systemic sclerosis. Curr Opin Rheumatol 2005; 17: 86-90
  • 6 Sawaya HHB, Jimenez SA, Artlett CM. Quantification of fetal microchimeric cells in clinically affected and unaffected skin of patients with systemic sclerosis. Rheumatology (Oxford) 2004; 43: 965-968
  • 7 Klintschar M, Schwaiger P, Mannweiler S, Regauer S, Kleiber M. Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2001; 86: 2494-2498
  • 8 Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab 2002; 87: 3315-3320
  • 9 Klintschar M, Immel UD, Kehlen A , et al. Fetal microchimerism in Hashimoto’s thyroiditis: a quantitative approach. Eur J Endocrinol 2006; 154: 237-241
  • 10 Hall JM, Lingenfelter P, Adams SL, Lasser D, Hansen JA, Bean MA. Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood 1995; 86: 2829-2832
  • 11 Lo YM, Lau TK, Chan LY, Leung TN, Chang AM. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 2000; 46: 1301-1309
  • 12 Reed AM, Picornell YJ, Harwood A, Kredich DW. Chimerism in children with juvenile dermatomyositis. Lancet 2000; 356: 2156-2157
  • 13 Artlett CM, Ramos R, Jiminez SA, Patterson K, Miller FW, Rider LG ; Childhood Myositis Heterogeneity Collaborative Group. Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies. Lancet 2000; 356: 2155-2156
  • 14 McNallan KT, Aponte C, el-Azhary R , et al. Immunophenotyping of chimeric cells in localized scleroderma. Rheumatology (Oxford) 2007; 46: 398-402
  • 15 Suskind DL, Rosenthal P, Heyman MB , et al. Maternal microchimerism in the livers of patients with biliary atresia. BMC Gastroenterol 2004; 4: 14
  • 16 Hayashida M, Nishimoto Y, Matsuura T , et al. The evidence of maternal microchimerism in biliary atresia using fluorescent in situ hybridization. J Pediatr Surg 2007; 42: 2097-2101
  • 17 Muraji T, Hosaka N, Irie N , et al. Maternal microchimerism in underlying pathogenesis of biliary atresia: quantification and phenotypes of maternal cells in the liver. Pediatrics 2008; 121: 517-521
  • 18 Boniotto M, Berti I, Santon D, Ventura A, Crovella S. Absence of maternal microchimerism in very early onset inflammatory bowel disease R1. J Gastroenterol Hepatol 2006; 21: 1082-1084
  • 19 Attié T, Pelet A, Edery P , et al. Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet 1995; 4: 1381-1386
  • 20 Emison ES, McCallion AS, Kashuk CS , et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 2005; 434: 857-863
  • 21 Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet 2001; 38: 729-739
  • 22 Gariepy CE. Developmental disorders of the enteric nervous system: genetic and molecular bases. J Pediatr Gastroenterol Nutr 2004; 39: 5-11
  • 23 Uesaka T, Nagashimada M, Yonemura S, Enomoto H. Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest 2008; 118: 1890-1898
  • 24 Uesaka T, Jain S, Yonemura S, Uchiyama Y, Milbrandt J, Enomoto H. Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung’s disease phenotype. Development 2007; 134: 2171-2181
  • 25 Hannon RJ, Boston VE. Discordant Hirschsprung’s disease in monozygotic twins: a clue to pathogenesis?. J Pediatr Surg 1988; 23: 1034-1035
  • 26 Parikh DH, Tam PKH, Van Velzen D, Edgar D. Abnormalities in the distribution of laminin and collagen type IV in Hirschsprung’s disease. Gastroenterology 1992; 102 (4 Pt 1) 1236-1241
  • 27 Parikh DH, Tam PKH, Van Velzen D, Edgar D. The extracellular matrix components, tenascin and fibronectin, in Hirschsprung’s disease: an immunohistochemical study. J Pediatr Surg 1994; 29: 1302-1306
  • 28 Kuroda T, Doody DP, Donahoe PK. Aberrant colonic expression of MHC class II antigens in Hirschsprung’s disease. Aust N Z J Surg 1991; 61: 373-379
  • 29 Hirobe S, Doody DP, Ryan DP, Kim SH, Donahoe PK. Ectopic class II major histocompatibility antigens in Hirschsprung’s disease and neuronal intestinal dysplasia. J Pediatr Surg 1992; 27: 357-362 ; discussion 363
  • 30 Kobayashi H, Hirakawa H, Puri P. Overexpression of intercellular adhesion molecule-1 (ICAM-1) and MHC class II antigen on hypertrophic nerve trunks suggests an immunopathologic response in Hirschsprung’s disease. J Pediatr Surg 1995; 30: 1680-1683
  • 31 Reed AM, McNallan K, Wettstein P, Vehe R, Ober C. Does HLA-dependent chimerism underlie the pathogenesis of juvenile dermatomyositis?. J Immunol 2004; 172: 5041-5046
  • 32 Khosrotehrani K, Stroh H, Bianchi DW, Johnson KL. Combined FISH and immunolabeling on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques 2003; 34: 242-244
  • 33 Stevens AM, Hermes HM, Rutledge JC, Buyon JP, Nelson JL. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet 2003; 362: 1617-1623
  • 34 Nelson JL, Gillespie KM, Lambert NC , et al. Maternal microchimerism in peripheral blood in type 1 diabetes and pancreatic islet beta cell microchimerism. Proc Natl Acad Sci U S A 2007; 104: 1637-1642
  • 35 Stevens AM, Hermes HM, Kiefer MM, Rutledge JC, Nelson JL. Chimeric maternal cells with tissue-specific antigen expression and morphology are common in infant tissues. Pediatr Dev Pathol 2009; 12: 337-346
  • 36 Su EC, Johnson KL, Tighiouart H, Bianchi DW. Murine maternal cell microchimerism: analysis using real-time PCR and in vivo imaging. Biol Reprod 2008; 78: 883-887
  • 37 Wendelschafer-Crabb G, Neppalli V, Jessurun J , et al. Mucosal nerve deficiency in chronic childhood constipation: a postmigration defect?. J Pediatr Surg 2009; 44: 773-782