Helically Chiral 1,1′-Bitriphenylenes

Significance: The unique helical chirality of helicenes makes them attractive candidates for optical and electronic applications. This paper reports the synthesis of [7]helicenes, helically chiral 1,1′-bitriphenylenes, via rhodium-catalyzed double [2+2+2] cycloaddition. The scope of this method was examined by varying the R1 and R2 groups, ranging from electron-deficient to electron-rich groups, to give the corresponding helicenes in good yields (60–73%) and 60–93% ee.

Comment: The authors report a highly enantioselective method of making [7]helicenes containing fluorene, spirofluorene and phosphafluorene. Circularly polarized luminescence properties of these helicenes containing fluorene and spirofluorene are significantly larger than those of known helicene derivatives.

Y. SAWADA, S. FURUMI, A. TAKAI, M. TAKEUCHI, K. NOGUCHI, K. TANAKA* (TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY, NATIONAL INSTITUTE FOR MATERIALS SCIENCE, TSUKUBA AND SCIENCE AND TECHNOLOGY AGENCY, KAWAGUCHI, JAPAN)
Rhodium-Catalyzed Enantioselective Synthesis, Crystal Structures, and Photophysical Properties of Helically Chiral 1,1′-Bitriphenylenes