Synthesis 2012; 44(10): 1526-1534
DOI: 10.1055/s-0031-1290815
special topic
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Aerobic Methyl/Methylene Oxygenation and C–H Formylation with a DABCO–DMSO System for the Synthesis of Carbonyl Indoles and Pyrroles

Yi-Feng Wang
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore , Fax: +65(6791)1961   Email: shunsuke@ntu.edu.sg
,
Feng-Lian Zhang
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore , Fax: +65(6791)1961   Email: shunsuke@ntu.edu.sg
,
Shunsuke Chiba*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore , Fax: +65(6791)1961   Email: shunsuke@ntu.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 17 February 2012

Accepted after revision: 09 March 2012

Publication Date:
20 April 2012 (online)


Abstract

Copper-catalyzed aerobic methyl/methylene oxygenation of substituted indoles and pyrroles was developed using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an additive in dimethyl sulfoxide (DMSO). Similar aerobic catalytic conditions could also be utilized for direct C–H formylation of C(3) on indoles and C(2) on pyrroles.

Supporting Information

 
  • References


    • For recent reviews on indole alkaloids, see:
    • 1a Kawasaki T, Higichi K. Nat. Prod. Rep. 2007; 24: 843
    • 1b Kawasaki T, Higichi K. Nat. Prod. Rep. 2005; 22: 761
    • 1c Somei M, Yamada F. Nat. Prod. Rep. 2005; 22: 73

      For recent selected reports on biologically active indole derivatives, see:
    • 2a Stansfield I, Ercolani C, Mackay A, Conte I, Pompei M, Koch U, Gennari N, Giuliano C, Rowley M, Narjes F. Bioorg. Med. Chem. Lett. 2009; 19: 627
    • 2b Ambrus JI, Kelso MJ, Bremner JB, Ball AR, Casadei G, Lewis K. Bioorg. Med. Chem. Lett. 2008; 18: 4294
    • 2c Beevers RE, Buckley GM, Davies N, Fraser JL, Galvin FC, Hannah DR, Haughan AF, Jenkins K, Mack SR, Pitt WR, Ratcliffe AJ, Richard MD, Sabin V, Sharpe A, Williams SC. Bioorg. Med. Chem. Lett. 2006; 16: 2539
    • 2d Lee KL, Foley MA, Chen LR, Behnke ML, Lovering FE, Kirincich SJ, Wang WH, Shim J, Tam S, Shen MW. H, Khor SP, Xu X, Goodwin DG, Ramarao MK, Nickerson-Nutter C, Donahue F, Ku MS, Clark JD, McKew JC. J. Med. Chem. 2007; 50: 1380
    • 2e Harper S, Avolio S, Pacini B, Di Filippo M, Altamura S, Tomei L, Paonessa G, Di Marco S, Carfi A, Giuliano C, Padron J, Bonelli F, Migliaccio G, De Francesco R, Laufer R, Rowley M, Narjes F. J. Med. Chem. 2005; 48: 4547
    • 2f Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, DiCioccio AT, Petrova T, Mitschler A, Podjarny AD. J. Med. Chem. 2005; 48: 3141
    • 2g Sawyer JS, Beight DW, Smith EC. R, Snyder DW, Chastain MK, Tielking RL, Hartley LW, Carlson DG. J. Med. Chem. 2005; 48: 893

      For recent reviews on pyrrole alkaloids, see:
    • 3a Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
    • 3b Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 3c Hoffmann H, Lindel T. Synthesis 2003; 1753

      For recent selected reports on biologically active pyrrole derivatives, see:
    • 4a Hall A, Atkinson S, Brown SH, Chessell IP, Chowdhury A, Giblin GM. P, Goldsmith P, Healy MP, Jandu KS, Johnson MR, Michel AD, Naylor A, Sweeting JA. Bioorg. Med. Chem. Lett. 2007; 17: 1200
    • 4b Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
    • 4c Micheli F, Di Fabio R, Benedetti R, Capelli AM, Cavallini P, Cavanni P, Davalli S, Donati D, Feriani A, Gehanne S, Hamdan M, Maffeis M, Sabbatini FM, Tranquillini ME, Viziano MV. A. Farmaco 2004; 59: 175
    • 4d Huffman JW. Curr. Med. Chem. 1999; 6: 705

      For selected reviews, see:
    • 5a Beck EM, Gaunt MJ. Top. Curr. Chem. 2010; 292: 85
    • 5b Joucla L, Djakovitch L. Adv. Synth. Catal. 2009; 351: 673
    • 5c Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. . Wiley-Blackwell; New York: 2010
    • 5d Progress in Heterocyclic Chemistry . Vol. 20. Gribble GW, Joule JA. Elsevier; Oxford: 2008. and others in this series
    • 5e Comprehensive Heterocyclic Chemistry III . Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Pergamon; Oxford: 2008
    • 5f Comprehensive Heterocyclic Chemistry II . Katritzky AR, Rees CA, Scriven EF. V, Taylor RJ. K. Pergamon; Oxford: 1996
    • 5g Eicher T, Hauptmann S. The Chemistry of Heterocycles . Wiley-VCH; Weinheim: 2003
  • 6 During the preparation of this manuscript, Maes reported copper- and iron-catalyzed aerobic oxygenation of the methylene group of aryl(di)azinylmethanes, see: Houwer JD, Tehrani KA, Maes BU. W. Angew. Chem. Int. Ed. 2012; 51: 2745

    • For recent selected reports on metal-catalyzed benzylic oxygenation with tert-butyl hydroperoxide, see:
    • 8a Shaikh TM. A, Sudalai A. Eur. J. Org. Chem. 2008; 4877
    • 8b Nakanishi M, Bolm C. Adv. Synth. Catal. 2007; 349: 861
    • 8c Bonvin Y, Callens E, Larrosa I, Henderson DA, Oldham J, Burton AJ, Barrett AG. M. Org. Lett. 2005; 7: 4549
  • 9 For a report on selective benzylic methyl/methylene oxygenation by IBX, see: Nicolaou KC, Montagnon T, Baran PS, Zhong Y.-L. J. Am. Chem. Soc. 2002; 124: 2245
    • 10a Mayr H, Ofial AR. J. Phys. Org. Chem. 2008; 21: 584
    • 10b Lakhdar S, Westermaier M, Terrier F, Goumont R, Boubaker T, Ofial AR, Mayr H. J. Org. Chem. 2006; 71: 9088
  • 11 Compound 1h′ might be formed through dimerization of putative radical intermediate II shown in Scheme 2
  • 12 Sekar reported aerobic oxidation of alcohols to carbonyl compounds using a copper–DABCO complex with TEMPO, see: Mannam S, Alamsetti SK, Sekar G. Adv. Synth. Catal. 2007; 349: 2253

    • For recent reviews on copper–dioxygene systems, see:
    • 13a Rolff M, Tuczek F. Angew. Chem. Int. Ed. 2008; 47: 2344
    • 13b Lewis EA, Tolman WB. Chem. Rev. 2004; 104: 1047
    • 13c Gamez P, Aubel PG, Driessen WL, Reedijk J. Chem. Soc. Rev. 2001; 30: 376
    • 13d Fontecave M, Pierre J.-L. Coord. Chem. Rev. 1998; 170: 125
  • 14 One of the possible radical fragmentation mechanisms might be the Fenton-like reaction of peroxycopper intermdiate III to give oxyradical, which undergo C–C bond cleavage to give oxygenated products. For a recent report on the Fenton mechanism, see: Rachmilovich-Calis S, Masarwa A, Meyerstein N, Meyerstein D, van Eldik R. Chem.–Eur. J. 2009; 15: 8303
  • 15 For a review on the Vilsmeier formylation, see: Jones G, Stanforth SP. Org. React. 1997; 49: 1
  • 16 Jiao recently reported Pd-catalyzed aerobic direct C(3)-H cyanation of indoles using DMF as a CN source, see: Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
  • 17 Chen and Cheng recently reported Pd-catalyzed aerobic direct C(3)-H cyanation of indoles using DMSO as a carbon source and NH4HCO3 as a nitrogen source, see: Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725
  • 18 Liegault B, Petrov I, Gorelsky SI, Fagnou K. J. Org. Chem. 2010; 75: 1047
  • 19 Lee S, Park SB. Org. Lett. 2009; 11: 5214
  • 20 Jiang X, Tiwari A, Thompson M, Chen Z, Cleary TP, Lee TB. K. Org. Process Res. Dev. 2001; 5: 604
  • 21 Guchhait SK, Kashyap M, Kamble H. J. Org. Chem. 2011; 76: 4753
  • 22 Taylor JE, Jones MD, Williams JM. J, Bull SD. Org. Lett. 2010; 12: 5740
  • 23 Lopez S, Rodriguez V, Montenegro J, Saa C, Alvarez R, Lopez CS, de Lera AR, Simon R, Lazarova T, Padros E. ChemBioChem 2005; 6: 2078
  • 24 Jaisankar P, Srinivasan PC. Synthesis 2006; 2413
  • 25 Chakrabarty M, Sarkar S, Linden A, Stein BK. Synth. Commun. 2004; 34: 1801
  • 26 Comins DL, Killpack MO. J. Org. Chem. 1987; 52: 104
  • 27 Chakrabarty M, Basak R, Harigaya Y, Takayanagi H. Tetrahedron 2005; 61: 1793
  • 28 Dubey PK, Babu B, Narayana MV. Indian J. Heterocycl. Chem. 2006; 15: 205
  • 29 Purkarthofer T, Gruber K, Fechter MH, Griengl H. Tetrahedron 2005; 61: 7661