Introduction

n-Butyllithium (n-BuLi) is one of the most prominent organolithium reagents in the whole of synthetic chemistry,\(^1\)\(^,\)\(^,\)\(^3\) and available as solutions in alkanes such as pentane, hexane, or heptane, which is usually encountered as a pale yellow solution. It is unstable towards air or moisture but stable in an atmosphere of nitrogen. It has been widely used in organic reactions, such as regioselective lithiation reaction,\(^4\) reversible metathesis reaction,\(^5\) Claisen rearrangement,\(^6\) phospho-Fries rearrangement,\(^7\) coupling reaction,\(^8\) asymmetric deprotonation–electrophilic trapping reaction,\(^9\) enantioselective hydroxyalkylation,\(^10\) etc. In general, n-butyllithium is commercially available and can also be prepared readily by the reaction of 1-bromobutane or 1-chlorobutane with Li metal (Scheme 1).\(^11\) An overview of the usage of n-BuLi in organic synthesis is presented below.

(A) Fort and co-workers described an efficient method for the synthesis of polysubstituted furo[2,3-c]pyridines via successive regioselective lithiations, using n-BuLi or [n-BuLi/LiDMAE] as base. For each step the products were obtained in moderate to excellent yields.\(^5\)

(B) Bailey et al. reported mild and highly efficient experimental conditions for the reversible metathesis reaction known as the lithium–halogen exchange. The reaction products of 1-bromo-4-tert-butylbenzene with n-BuLi at 0 °C are obtained quantitative in heptane containing a small quantity of THF. Particularly, nettlesome side reactions, including coupling of aryllithium with the co-generated alkyl halide and formation of a benzyne intermediate via ortho-metallation of the aryl halide, are effectively avoided.\(^5\)

(C) Upon treatment with n-BuLi, a variety of allyl 1,1-dichlorovinyl ethers undergo rearrangement to furnish high yields of γ,δ-unsaturated esters after alcohol addition. A potential advantage of this method over other variants of the Claisen rearrangement is the ability to add a variety of alcohol nucleophiles to the proposed ketene intermediate, allowing the one-pot preparation of diverse esters of γ,δ-unsaturated carboxylic acids with high stereoselectivity.\(^6\)
(D) n-BuLi together with i-Pr₂NH has been used in the preparation of bifunctional BINOL ligands bearing phosphate oxides [P(=O)R₂], phosphonates [P(=O)(OR)₂], or phosphoramides [P(=O)(NR₂)₂] at the 3,3'-positions via a phospho-Fries rearrangement as key step. This method has an advantage with regard to yield and purification in comparison with a coupling method that uses halide compounds, expensive diphenylphosphate oxide [Ph₂P(=O)H], and palladium or nickel catalysts.⁷

(E) Tarselli and Micalizio described a successful procedure for the coupling of aliphatic imines with allylic and allenic alkoxides enabled by a unique reactivity profile of Ti(IV) isopropoxide/n-BuLi compared to well-known Ti(IV) isopropoxide/RMgX systems. This coupling proceeds with moderate to excellent yields.⁸

(F) An enantioselective hydroxyalkylation of o-tolualdehyde and 3-aminotetrahydrofurans (or 3-aminopyrrolidines, 3-aminotetrahydrothiophens) in the presence of n-BuLi and lithium amides gives the target product 1-o-tolympentan-1-ol in good yield and moderate ee.¹⁰

(G) The highly pyramidalized alkene pentacyclo[4.3.0.0²⁴.0³⁸.0⁵⁷]non-4-ene was successfully synthesized with n-BuLi via dehalogenation of vicinal dihalides. The method has proven to be reliable for the synthesis of a variety of strained alkenes.¹²

(H) Luliński et al. found that lithiated benzonitriles can be generated in high yields from reactions of bromobenzonitriles with n-BuLi in THF under standard cryogenic conditions (ca. −70 °C, even up to −60 °C). The reverse addition mode is employed to reduce significantly side reactions.¹³

References
