SYNLETT
Spotlight 400

1-[[1-(Cyano-2-ethoxy-2-oxoethylidenaminoxy)dimethylaminomorpholinomethylene]methaneaminium hexafluorophosphate

Julián Bergueiro Álvarez

Julián Bergueiro Álvarez received his BSc in Chemistry in 2007 and his MSc in Organic Chemistry in 2009, both from the Universidad de Santiago de Compostela (USC). Presently he is a PhD student at the USC under the supervision of Professor Susana López. His research interests mainly focus on the synthesis of biologically active polyenes and polyenynes by using metal-catalyzed cross-coupling reactions, and on bioorganic studies of retinoids. Nowadays his work is focused on poly(phenylacetylene)s chemistry.

Departamento de Química Orgánica, Universidad de Santiago de Compostela, Avenida de las Ciencias S/N, Campus Sur, 15782 Santiago de Compostela, Spain
E-mail: julian.bergueiro@usc.es

Introduction

Peptide coupling reagents are rapidly evolving in the last years from the classical carbodiimide methods to a second generation onium salts based reactives, and nowadays the novel uronium-type reagents derived from Oxyma like 1-

\[
1-\text{[[1-(Cyano-2-ethoxy-2-oxoethylidenaminoxy)dimethylaminomorpholinomethylene]methaneaminium hexafluorophosphate (COMU) introduced by Albericio’s group.}^2
\]

This third generation peptide coupling reagent is soluble and stable due to the presence of morpholin.\(^2b\) By-products are water-soluble and easy to remove, making COMU an excellent choice as coupling reagent in solid- and liquid-phase peptide synthesis.\(^3\) In addition, COMU shows a less hazardous safety profile than benzotriazole-based reagents like HATU and HBTU, which exhibit unpredictable autocatalytic decomposition and therefore a higher risk of explosion, and cause allergic reactions. COMU gives better results than aza derivatives in the presence of only one equivalent of base, and no activation time is required reducing the common racemization problem. Further, the couplings can be monitored by advantageous visual or colorimetric reaction. Although commercially available, COMU can be prepared easily (Scheme 1).\(^2a,4\)

Abstracts

(A) By combining of microwave heating and solid-phase peptide synthesis,\(^5\) Yamada and Shimizu\(^6\) prepared cyclic RGD peptides using COMU as coupling agent in good yields. In the five coupling sequences COMU was as effective as HBTU at room temperature (73% and 69% yield, respectively). Although at 50 °C, the COMU-promoted coupling was faster and 84% yield instead of 39% using HBTU was obtained.

Scheme 1 Synthesis of COMU

SYNLETT 2012, 23, 1849–1850

Advanced online publication: 05.07.2012
DOI: 10.1055/s-0031-1290443; Art ID: ST-2012-V0409-V
© Georg Thieme Verlag Stuttgart · New York
A highly efficient COMU-mediated solid-phase methodology for the synthesis of para- and meta-arylolepoids with free acids or free amides at the C-terminus was reported.\(^7\)

Inverse miniemulsions, showing COMU’s versatility.\(^11\)

Linked polystyrene nanoparticles where synthesized by coupling in functionalized polystyrene. Deprotected, hydrophobic peptide crosslinking of a labeled Fmoc N-protected FRET pair and an amino-functionalized polystyrene nanoparticles where synthesized by coupling in inverse miniemulsions, showing COMU’s versatility.\(^11\)

COMU also has been reported to promote selective amidation in the presence of free hydroxyl groups. Blagg\(^12\) employed this reaction in the total synthesis of monoenomycin, a trinomycin A analogue with anticancer activity.

References

