Synlett 2012; 23(12): 1733-1750
DOI: 10.1055/s-0031-1290399
account
© Georg Thieme Verlag Stuttgart · New York

Construction and Function of Interpenetrated Molecules Based on the Positively Charged Axle Components

Zhi-Jun Zhang
Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China, Fax: +86(22)23503625   Email: yuliu@nankai.edu.cn
,
Yu Liu*
Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China, Fax: +86(22)23503625   Email: yuliu@nankai.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 22 March 2012

Accepted after revision: 16 April 2012

Publication Date:
14 June 2012 (online)


Abstract

Interpenetrated molecules have attracted increasing attention from chemists not only because of their intriguing architectures and topologies, but also as a result of potential applications in molecular machinery and nanotechnology. In this account we review recent efforts on the construction of interpenetrated molecules based on the molecular recognition toward some positively charged axle components in aqueous or organic medium. We mainly focus on guest molecules containing ammonium, anilinium, and pyridinium groups. The host molecules are cucurbiturils and crown ethers.

1 Introduction

2 Interpenetrated Molecules Based on Crown Ethers

2.1 Thermodynamics of Resulting Complexes Between Dibenzo-24-crown-8 Derivatives and 1,2-Bis(pyridinium)ethanes

2.2 Molecular Switches Based on Positively Charged Molecules and Crown Ethers

2.3 Interlocked Molecules Based on Positively Charged Molecules and Crown Ethers

3 Interpenetrated Molecules Based on Cucurbiturils

3.1 Reversible 2D Pseudopolyrotaxanes and their Applications in DNA Condensation

3.2 Pseudorotaxanes Based on Bipyridinium Derivatives and Cucurbiturils

3.3 Stabilization of Radical Cations in Pseudopolyrotaxanes Based on Cucurbituril and Polyaniline

4 Conclusion and Outlook

 
  • References

    • 1a Fyfe MC. T, Stoddart JF. Acc. Chem. Res. 1997; 30: 393
    • 1b Roesky HW, Andruh M. Coord. Chem. Rev. 2003; 236: 91
    • 1c Elemans JA. A. W, Rowan AE, Nolte RJ. M. J. Mater. Chem. 2003; 13: 2661
    • 1d Vriezema DM, Aragon MC, Elemans JA. A. W, Cornelissen JJ. L. M, Rowan AE, Nolte RJ. M. Chem. Rev. 2005; 105: 1445
    • 2a Ashton PR, Campbell PJ, Glink PT, Philp D, Spencer N, Stoddart JF, Chrystal EJ. T, Menzer S, Williams DJ, Tasker PA. Angew. Chem. Int. Ed. Engl. 1995; 34: 1865
    • 2b Ashton PR, Chrystal EJ. T, Glink PT, Menzer S, Schiavo C, Stoddart JF, Tasker PA, White AJ. P, Williams DJ. Chem. Eur. J. 1996; 2: 709
    • 2c Kolchinski AG, Busch DH, Alcock NW. J. Chem. Soc., Chem. Commun. 1995; 1289
  • 3 Kaiser G, Jarrosson T, Otto S, Ng YF, Bond AD, Sanders JK. M. Angew. Chem. Int. Ed. 2004; 43: 1959
    • 4a Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed. 2005; 44: 4844
    • 4b Yang C, Ko YH, Selvapalam N, Origane Y, Mori T, Wada T, Kim K, Inoue Y. Org. Lett. 2007; 9: 4789
  • 5 Hoffart DJ, Tiburcio J, de la Torre A, Knight LK, Loeb SJ. Angew. Chem. Int. Ed. 2008; 47: 97
    • 6a Clever GH, Shionoya M. Chem. Eur. J. 2010; 16: 11792
    • 6b Voignier J, Frey J, Kraus T, Budesinsky M, Cvacka J, Heitz V, Sauvage JP. Chem. Eur. J. 2011; 17: 5404
    • 7a Balzani V, Credi A, Raymo FM, Stoddart JF. Angew. Chem. Int. Ed. 2000; 39: 3348
    • 7b Kay ER, Leigh DA, Zerbetto F. Angew. Chem. Int. Ed. 2007; 46: 72
    • 7c Zhang Z.-J, Zhang H.-Y, Liu Y. Chem. J. Chin. Univ. 2011; 32: 1913
    • 7d Ma X, Cao J, Wang Q, Tian H. Chem. Commun. 2011; 47: 3559
    • 7e Zhang H, Kou XX, Zhang Q, Qu DH, Tian H. Org. Biomol. Chem. 2011; 9: 4051
    • 7f Qu D.-H, Tian H. Chem. Sci. 2011; 2: 1011
  • 8 Liu Y, Li C.-J, Zhang H.-Y, Wang L.-H, Li X.-Y. Eur. J. Org. Chem. 2007; 4510
  • 9 Loeb SJ, Wisner JA. Angew. Chem. Int. Ed. 1998; 37: 2838
  • 10 Liu Y, Li C.-J, Zhang H.-Y, Wang L.-H, Luo Q, Wang G. J. Chem. Phys. 2007; 126: 64705
  • 11 Vella SJ, Tiburcio J, Gauld JW, Loeb SJ. Org. Lett. 2006; 8: 3421
  • 12 Jiang W, Han M, Zhang H.-Y, Zhang Z.-J, Liu Y. Chem. Eur. J. 2009; 15: 9938
  • 13 Han M, Zhang H.-Y, Yang L.-X, Jiang Q, Liu Y. Org. Lett. 2008; 10: 5557
  • 14 Ding Z.-J, Zhang Y.-M, Teng X, Liu Y. J. Org. Chem. 2011; 76: 1910
    • 15a Martínez-Díaz M.-V, Spencer N, Stoddart JF. Angew. Chem. Int. Ed. Engl. 1997; 36: 1904
    • 15b Ashton PR, Ballardini R, Balzani V, Baxter I, Credi A, Fyfe MC. T, Gandolfi MT, Gómez-López M, Martínez-Díaz M.-V, Piersanti A, Spencer N, Stoddart JF, Venturi M, White AJ. P, Williams DJ. J. Am. Chem. Soc. 1998; 120: 11932
    • 15c Lin C.-F, Lai C.-C, Liu Y.-H, Peng S.-M, Chiu S.-H. Chem. Eur. J. 2007; 13: 4350
    • 16a Wu J.-S, Leung KC.-F, Benítez D, Han JY, Cantrill SJ, Fang L, Stoddart JF. Angew. Chem. Int. Ed. 2008; 47: 7470
    • 16b Coutrot F, Romuald C, Busseron E. Org. Lett. 2008; 10: 3741
    • 16c Chuang C.-J, Li W.-S, Lai C.-C, Liu Y.-H, Peng S.-M, Chao I, Chiu S.-H. Org. Lett. 2009; 11: 385
    • 17a Badjić JD, Balzani V, Credi A, Silvi S, Stoddart JF. Science 2004; 303: 1845
    • 17b Badjić JD, Ronconi CM, Stoddart JF, Balzani V, Silvi S, Credi A. J. Am. Chem. Soc. 2006; 128: 1489
  • 18 Coutrot F, Busseron E. Chem. Eur. J. 2008; 14: 4784
  • 19 Jiang Q, Zhang H.-Y, Han M, Ding Z.-J, Liu Y. Org. Lett. 2010; 12: 1728
  • 20 Arico F, Badjic JD, Cantrill SJ, Flood AH, Leung KC. F, Liu Y, Stoddart JF. Top. Curr. Chem. 2005; 249: 203
  • 21 Yoon I, Narita M, Shimizu T, Asakawa M. J. Am. Chem. Soc. 2004; 126: 16740
  • 22 Hsueh S.-Y, Ko J.-L, Lai C.-C, Liu Y.-H, Peng S.-M, Chiu S.-H. Angew. Chem. Int. Ed. 2011; 50: 664
  • 23 Chiu C.-W, Lai C.-C, Chiu S.-H. J. Am. Chem. Soc. 2007; 129: 3500
  • 24 Ueng S.-H, Hsesh S.-Y, Lai C.-C, Liu Y.-H, Peng S.-M, Chiu S.-H. Chem. Commun. 2008; 817
  • 25 Zhang Z.-J, Zhang H.-Y, Wang H, Liu Y. Angew. Chem. Int. Ed. 2011; 50: 10834
  • 26 Jiang W, Winkler HD. F, Schalley CA. J. Am. Chem. Soc. 2008; 130: 13852
  • 27 Han M, Zhang H.-Y, Yang L.-X, Ding Z.-J, Zhuang R.-J, Liu Y. Eur. J. Org. Chem. 2011; 7271
    • 28a Jäger R, Schmidt T, Karbach D, Vögtle F. Synlett 1996; 723
    • 28b Yamamoto C, Okamoto Y, Schmidt T, Jäger R, Vögtle F. J. Am. Chem. Soc. 1997; 119: 10547
    • 28c Reuter C, Mohry A, Sobaski A, Vögtle F. Chem. Eur. J. 2000; 6: 1674
    • 29a Liu Y, Bonvallet PA, Vignon SA, Khan SI, Stoddart JF. Angew. Chem. Int. Ed. 2005; 44: 3050
    • 29b Liu Y, Vignon SA, Zhang X.-Y, Bonvallet PA, Khan SI, Houk KN, Stoddart JF. J. Org. Chem. 2005; 70: 9334
    • 29c Liu Y, Vignon SA, Zhang X.-Y, Houk KN, Stoddart JF. Chem. Commun. 2005; 3927
    • 29d Zhao YL, Trabolsi A, Stoddart JF. Chem. Commun. 2009; 4844
    • 30a Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K. Acc. Chem. Res. 2003; 36: 621
    • 30b Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J. Chem. Soc. Rev. 2007; 36: 267
    • 30c Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc. 2000; 122: 540
    • 31a Liu Y, Ke C.-F, Zhang H.-Y, Wu W.-J, Shi J. J. Org. Chem. 2007; 72: 280
    • 31b Ke C.-F, Hou S, Zhang H.-Y, Liu Y, Yang K, Feng X.-Z. Chem. Commun. 2007; 3374
    • 32a Liu Y, Wang H, Chen Y, Ke C.-F, Liu M. J. Am. Chem. Soc. 2005; 127: 657
    • 32b Liu Y, Zhao Y.-L, Chen Y, Wang M. Macromol. Rapid Commun. 2005; 26: 401
    • 32c Liu Y, Song Y, Wang H, Zhang H.-Y, Li X.-Q. Macromolecules 2004; 37: 6370
    • 32d Liu Y, Li L, Zhang H.-Y, Zhao Y.-L, Wu X. Macromolecules 2002; 35: 9934
    • 32e Liu Y, Yu L, Chen Y, Zhao Y.-L, Yang H. J. Am. Chem. Soc. 2007; 129: 10656
  • 33 Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L. J. Am. Chem. Soc. 2005; 127: 15959
    • 34a Kim H.-J, Jeon WS, Ko YH, Kim K. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 5007
    • 34b Ong W, Kaifer AE. Org. Lett. 2002; 4: 1791
  • 35 Jeon WS, Kim H.-J, Lee C, Kim K. Chem. Commun. 2002; 1828
  • 36 Jeon WS, Ziganshina AY, Lee JW, Ko YH, Kang J.-K, Lee C, Kim K. Angew. Chem. Int. Ed. 2003; 42: 4097
  • 37 Moon K, Kaifer AE. Org. Lett. 2004; 6: 185
  • 38 Liu Y, Li X.-Y, Zhang H.-Y, Li C.-J, Ding F. J. Org. Chem. 2007; 72: 3640
  • 39 Ding Z.-J, Zhang H.-Y, Wang L.-H, Ding F, Liu Y. Org. Lett. 2011; 13: 856
  • 40 Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L. J. Am. Chem. Soc. 2005; 127: 15959
  • 41 Kim H.-J, Heo J, Jeon WS, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed. 2001; 40: 1526
  • 42 Zhang Z.-J, Liu Y unpublished results
  • 43 Zhang Z.-J, Zhang H.-Y, Chen L, Liu Y. J. Org. Chem. 2011; 76: 8270
  • 44 Zhang Z.-J, Zhang Y.-M, Liu Y. J. Org. Chem. 2011; 76: 4682
  • 45 Zhang Y.-M, Chen Y, Zhuang R.-J, Liu Y. Supramol. Chem. 2011; 23: 372
    • 46a Ziganshina AY, Ko YH, Jeon WS, Kim K. Chem. Commun. 2004; 806
    • 46b Hwang I, Ziganshina AY, Ko YH, Yun G, Kim K. Chem. Commun. 2009; 416
    • 47a Jeon D, Kim J, Gallagher MC, Willis RF. Science 1992; 256: 1662
    • 47b Skotheim TA, Elsenbaumer RL, Renolds JR 2nd ed. Handbook of Conducting Polymers . Marcel Dekker; New York: 1997
    • 47c MacDiarmid AG, Epstein AJ, Salaneck WR, Clark DT, Samuelsen EJ. Science and Applications of Conducting Polymers . Adam Hilger; Bristol, England: 1990
  • 48 Lee K, Cho S, Park SH, Heeger AJ, Lee C.-W, Lee S.-H. Nature 2006; 441: 65
  • 49 Eelkema R, Maeda K, Odell B, Anderson HL. J. Am. Chem. Soc. 2007; 129: 12384
  • 50 Liu Y, Shi J, Chen Y, Ke C.-F. Angew. Chem. Int. Ed. 2008; 47: 7293