Synlett 2012(3): 409-412  
DOI: 10.1055/s-0031-1290319
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Direct Synthesis of α-Amino Amides from N-Alkyl Amines by the Copper-Catalyzed Oxidative Ugi-Type Reaction

Xin Yea,b, Chunsong Xie*a, Rui Huangb, Jinhua Liu*b
a Research Center of Biomedicine and Health, Hangzhou Normal University, Hangzhou 310012, P. R. of China
Fax: +86(571)28865630; e-Mail: chunsongxie@hznu.edu.cn;
b College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. of China
e-Mail: ljh@hznu.edu.cn ;
Further Information

Publication History

Received 20 October 2011
Publication Date:
25 January 2012 (online)

Abstract

α-Amino amides can be accessed directly form N-alkyl amines by the isocyanide-compatible oxidative copper-peroxide conditions even in the presence of water. Various functional groups are tolerated in the reaction, leading to the synthesis of various α-amino amides in moderate yield. A plausible mechanism is proposed in which an oxidative Ugi-type three-component pathway is supposed to be involved.

    References and Notes

  • 1a Dolle RE. Mol. Diversity  1998,  3:  199 
  • 1b Weber L. Curr. Med. Chem.  2002,  9:  2085 
  • 1c Hulme C. Gore V. Curr. Med. Chem.  2003,  10:  51 
  • 1d Sexton KE. Lee HT. Massa M. Padia J. Patt WC. Liao P. Pontrello JK. Roth BD. Spahr MA. Ramharack R. Bioorg. Med. Chem.  2003,  11:  4827 
  • 1e Beguin C. LeTiran A. Stables JP. Voyksnerc RD. Kohn H. Bioorg. Med. Chem.  2004,  12:  3079 
  • 2a Iden HS. Lubell WD. J. Comb. Chem.  2008,  10:  691 
  • 2b Cuny G. Bois-Choussy M. Zhu JP. J. Am. Chem. Soc.  2004,  126:  14475 
  • 2c Erb W. Neuville L. Zhu JP. J. Org. Chem.  2009,  74:  3109 
  • 3a Porter JR. Wirschun WG. Kuntz KW. Snapper ML. Hoveyda AH. J. Am. Chem. Soc.  2000,  122:  2657 
  • 3b Takamura M. Hamashima Y. Usuda H. Kanai M. Shibasaki M. Angew. Chem. Int. Ed.  2000,  39:  1650 
  • 3c Lin YS. Alper H. Angew. Chem. Int. Ed.  2001,  40:  779 
  • 3d Wang MX. Lin SJ. J. Org. Chem.  2002,  67:  6542 
  • 3e Alcaide B. Almendros P. Aragoncillo C. Chem. Eur. J.  2002,  8:  3646 
  • 3f Ntaganda R. Milovic T. Tiburcioz J. Thadani AN. Chem. Commun.  2008,  4052 
  • 3g Loser R. Frizler M. Schilling K. Gutschow M. Angew. Chem. Int. Ed.  2008,  47:  4331 
  • 3h Noorduin WL. Izumi T. Millemaggi A. Leeman M. Meekers H. Van Enckevort WJP. Kellogg RM. Kaptein B. Vlieg E. Blackmond DG. J. Am. Chem. Soc.  2008,  130:  1158 
  • 3i Hirner S. Somfai P. J. Org. Chem.  2009,  74:  7798 
  • 4a Domling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 4b Dömling A. Chem. Rev.  2006,  106:  17 
  • 4c El Kaim L. Grimaud L. Tetrahedron  2009,  65:  2153 
  • 4d Lygin AV. Meijere A. Angew. Chem. Int. Ed.  2010,  49:  9094 
  • 5a Henriques A. Kan C. Chiaroni A. Riche C. Husson HP. J. Org. Chem.  1982,  47:  803 
  • 5b Han-ya Y. Tokuyama H. Fukuyama T. Angew. Chem. Int. Ed.  2011,  50:  4884 
  • 6 Tanaka Y. Hasui T. Suginome M. Org. Lett.  2007,  9:  4407 
  • 7a Li CJ. Acc. Chem. Res.  2009,  42:  335 
  • 7b Murahashi S.-I. Komiya N. Terai H. Angew. Chem. Int. Ed.  2005,  44:  6931 
  • 7c Rajendra PD. Subbarayappa A. Adv. Synth. Catal.  2011,  353:  1695 
  • 7d Nicolaou KC. Mathison CJN. Montagnon T. Angew. Chem. Int. Ed.  2003,  42:  4077 
  • 7e Nicolaou KC. Mathison CJN. Montagnon T. J. Am. Chem. Soc.  2004,  126:  5192 
  • 8a Ngouansavanh T. Zhu JP. Angew. Chem. Int. Ed.  2007,  46:  5775 
  • 8b Jiang GX. Chen J. Huang JS. Che CM. Org. Lett.  2009,  11:  4568 
  • 9a Brioche J. Masson G. Zhu JP. Org. Lett.  2010,  12:  1432 
  • 9b Feuer H. Rubinstein H. Nielsen AT. J. Org. Chem.  1958,  23:  1107 
  • 9c Saegusa T. Kobayashi S. Ito Y. Bull. Chem. Soc. Jpn.  1970,  43:  275 
  • 10a Saegusa T. Ito Y. Kobayashi S. Hirota K. Takeda N. Can. J. Chem.  1969,  47:  1217 
  • 10b Saegusa T. Ito Y. Kobayashi S. Takeda N. Hirota K. Tetrahedron Lett.  1967,  8:  521 
  • 10c Saegusa T. Ito Y. Kobayashi S. Takeda N. Hirota K. Tetrahedron Lett.  1967,  8:  1273 
  • 11 Ye X. Xie CS. Pan YY. Han LH. Xie T. Org. Lett.  2010,  12:  4240 
  • 12a Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 12b Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 13a Boess E. Sureshkumar D. Sud A. Wirtz C. Fares C. Klussmann M. J. Am. Chem. Soc.  2011,  133:  8106 
  • 13b Li Z. Bohle S. Li C.-J. Proc. Natl. Acad. Sci. U.S.A.  2006,  103:  8928 
  • 13c Ghobrial M. Schnurch M. Mihovilovic MD. J. Org. Chem.  2011,  76:  8781 
14

Representative Procedure for the Three-Component Reaction
Into an oven-dried flask, N,N-dimethylaniline (1a, 242 mg, 2.0 mmol), 1-(isocyanomethylsulfonyl)-4-methylbenzene (2a, 195 mg, 1.0 mmol), CuCl (10 mg, 0.1 mmol), Ph3P (26 mg, 0.1 mmol), and TBHP (70% aq, 2.4 mmol) were added at r.t.. Under the protection of N2, MeCN (5 mL) was added, and the reaction mixture was allowed to react at 80 ˚C for 6 h. After the end of the reaction, the mixture was filtered through a pad of Celite, and the filtrate was concentrated until the solvent was completely removed. The residue was then separated on a silica gel column, and the final product was obtained as a yellow powder (190 mg, 57%). ¹H NMR (400 MHz, CDCl3, TMS): δ = 7.72 (d, J = 8.8 Hz, 2 H), 7.29-7.35 (m, 3 H), 7.27 (m, 1 H), 6.89 (t, J = 7.4 Hz, 1 H), 6.68 (d, J = 7.6 Hz, 2 H), 4.69 (d, J = 7.2 Hz, 2 H), 3.75 (s, 2 H), 2.99 (s, 3 H), 2.46 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 170.4, 149.0, 145.6, 133.7, 130.0, 129.5, 128.9, 119.3, 113.4, 59.8, 58.6, 40.1, 21.8. HRMS (EI): m/z calcd for C17H20N2O3S [M]+: 332.1195; found: 332.1186.