Synlett 2012(3): 453-357  
DOI: 10.1055/s-0031-1290316
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of vic-Halohydrins via l-tert-Leucine-Catalyzed syn-Selective Aldol Reaction

Atsushi Umehara, Takuya Kanemitsu, Kazuhiro Nagata, Takashi Itoh*
School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
Fax: +81(3)37845982; e-Mail: itoh-t@pharm.showa-u.ac.jp;
Further Information

Publication History

Received 9 November 2011
Publication Date:
19 January 2012 (online)

Abstract

l-tert-Leucine was found to be an effective organocatalyst for the asymmetric aldol reaction of chloroacetone. The stereoselective synthesis of vic-halohydrins was accomplished with excellent regioselectivity (>99%) to generate α-chloro-β-hydroxy ketones with high syn selectivity (syn/anti = 16:1) and enantioselectivity (up to 95% ee).

    References and Notes

  • 1a Lu C. Luo Z. Huang L. Li X. Tetrahedron: Asymmetry  2011,  22:  722 
  • 1b Bloom JD. Dutia MD. Johnson BD. Wissner A. Burns MG. Largus EE. Dolan JA. Claus TH. J. Med. Chem.  1992,  35:  3081 
  • 1c Corey EJ. Link JO. J. Org. Chem.  1991,  56:  442 
  • 2a Chung JYL. Cvetovich R. Amato J. McWilliams JC. Reamer R. DiMichele L. J. Org. Chem.  2005,  70:  3592 
  • 2b Draper J. Britton R. Org. Lett.  2010,  12:  4034 
  • 3 Yoshimitsu T. Nakatani R. Kobayashi A. Tanaka T. Org. Lett.  2011,  13:  908 
  • 4 Kang B. Britton R. Org. Lett.  2007,  9:  5083 
  • 5a Stewart CA. VanderWerf CA. J. Am. Chem. Soc.  1954,  76:  1259 
  • 5b Owen LN. Saharia GS. J. Chem. Soc.  1953,  2582 
  • 5c Ranu BC. Banerjee S. J. Org. Chem.  2005,  70:  4517 
  • 5d Yadav JS. Reddy BVS. Baishya G. Harshavardhan SJ. Chary CJ. Gupta MK. Tetrahedron Lett.  2005,  46:  3569 
  • 5e Nishitani K. Shinyama K. Yamakawa K. Heterocycles  2007,  74:  191 
  • 5f Neimi H. Moradian M. Polyhedron  2008,  27:  3639 
  • 5g Pajkert R. Kolomeitsev AA. Milewska M. Röschenthaler G.-V. Koroniak H. Tetrahedron Lett.  2008,  49:  6046 
  • 6 Corey EJ. Helal CJ. Angew. Chem. Int. Ed.  1998,  37:  1986 
  • 7a Ohkuma T. Tsutsumi K. Utsumi N. Arai N. Noyori R. Murata K. Org. Lett.  2007,  9:  255 
  • 7b Bayston DJ. Travers CB. Polywka MEC. Tetrahedron: Asymmetry  1998,  9:  2015 
  • 7c Cross DJ. Kenny JA. Houson I. Campbell L. Walsgrove T. Wills M. Tetrahedron: Asymmetry  2001,  12:  1801 
  • 7d Morris DJ. Hayes AM. Wills M. J. Org. Chem.  2006,  71:  7035 
  • 8a Hamada T. Torii T. Izawa K. Ikariya T. Tetrahedron  2004,  60:  7411 
  • 8b Hamada T. Torii T. Izawa K. Noyori R. Ikariya T. Org. Lett.  2002,  4:  4373 
  • 8c Matharu DS. Morris DJ. Kawamoto AM. Clarkson GJ. Wills M. Org. Lett.  2005,  7:  5489 
  • 9a He L. Tang Z. Cun L.-F. Mi A.-Q. Jiang Y.-Z. Gong L.-Z. Tetrahedron  2006,  62:  346 
  • 9b Guillena G. Hita MC. Nájera C. Tetrahedron: Asymmetry  2007,  18:  1272 
  • 9c Sato K. Kuriyama M. Shimazawa R. Morimoto T. Kakiuchi K. Shirai R. Tetrahedron Lett.  2008,  49:  2402 
  • 9d Russo A. Botta G. Lattanzi A. Tetrahedron  2007,  63:  11886 
  • 9e Xu X.-Y. Wang Y.-Z. Gong L.-Z. Org. Lett.  2007,  9:  4247 
  • 10a Machajewski TD. Wong C.-H. Angew. Chem. Int. Ed.  2000,  39:  1352 
  • 10b Vogl HGEM. Shibasaki M. Chem. Eur. J.  1998,  4:  1137 
  • 10c Nelson SG. Tetrahedron: Asymmetry  1998,  9:  357 
  • 10d Guillena G. Nájera C. Ramón DJ. Tetrahedron: Asymmetry  2007,  18:  2249 
  • 10e Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev.  2007,  107:  5471 
  • 12 Kanemitsu T. Umehara A. Miyazaki M. Nagata K. Itoh T. Eur. J. Org. Chem.  2011,  993 
  • 13a Notz W. List B. J. Am. Chem. Soc.  2000,  122:  7386 
  • 13b Sakthivel K. Notz W. Bui T. Barbas CF. J. Am. Chem. Soc.  2001,  123:  5260 
  • 13c Córdova A. Notza W. Barbas CF. Chem. Commun.  2002,  3024 
  • 13d Guillena G. Hita MC. Nájera C. Tetrahedron: Asymmetry  2006,  17:  1027 
  • 13e Guillena GMC. Nájera C. Viózquez SF. Tetrahedron: Asymmetry  2007,  18:  2300 
  • 14a Ramasastry SSV. Zhang H. Tanaka F. Barbas CF.. J. Am. Chem. Soc.  2007,  129:  288 
  • 14b Ramasastry SSV. Albertshofer K. Utsumi N. Tanaka F. Barbas CF. Angew. Chem. Int. Ed.  2007,  46:  5572 
  • 14c Wu X. Jiang Z. Shen HM. Lu Y. Adv. Synth. Catal.  2007,  349:  812 
  • 14d Utsumi N. Imai M. Tanaka F. Ramasastry SSV. Barbas CF. Org. Lett.  2007,  9:  3445 
  • 14e Da C S. Che LP. Guo QP. Wu FC. Ma X. Jia YN. J. Org. Chem.  2009,  74:  2541 
  • 14f Larionova NA. Kucherenko AS. Siyutkin DE. Zlotin SG. Tetrahedron  2011,  67:  1948 
  • 14g Wu X. Ma Z. Ye Z. Qian S. Zhao G. Adv. Synth. Catal.  2009,  351:  158 
  • 14h Li J. Luo S. Cheng JP. J. Org. Chem.  2009,  74:  1747 
  • 15a Banerjee R. Desiraju GR. Mondal R. Howard JAK. Chem. Eur. J.  2004,  10:  3373 
  • 15b

    In this paper (ref. 15a), Howard and co-workers claimed that chlorine in organic compound is able to work as an intramolecular hydrogen bond acceptor. Their results support the proposed mechanism of our reaction system.

11

Optimized Procedure for the Synthesis of 3a To a mixture of chloroacetone (1a, 400 µL, 5 mmol) and l-tert-leucine (13 mg, 0.1 mmol), 4-nitrobenzaldehyde (2a, 76 mg, 0.5 mmol) was added, and the mixture was stirred at r.t. The reaction was monitored by TLC analysis. After 7 d, H2O was added and extracted with CH2Cl2 (3×), dried over MgSO4, and concentrated in vacuo. To determine the regioselectivity and the diastereomeric ratio, the remaining residue was analyzed by ¹H NMR. Moreover, the ee value of the product 3a was determined by chiral-phase HPLC analysis of the residue. Then, the residue was purified by column chromatography on silica gel in gradient elution with hexane-EtOAc to give a 7:1 inseparable mixture of the desired products 3a and 4a (108 mg, 89%).
Analytical Data for Compound 3a
¹H NMR (400 MHz, CDCl3): δ = 8.24-8.20 (m, 2 H), 7.61-7.58 (m, 2 H), 5.47 (t, J = 3.6 Hz, 1 H), 4.46 (d, J = 3.2 Hz, 1 H), 3.43 (d, J = 4.0 Hz, 1 H), 2.40 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 203.4, 147.6, 146.2, 127.3, 123.5, 72.0, 67.3, 28.3. HPLC: 83% ee [Daicel CHRALCEL OJ-H, hexane-iPrOH (9:1), flow rate 1.0 mL/min, λ = 254 nm]: t R(major) = 34.7 min; t R(minor) = 39.1 min.