Synthesis 2012(7): 1095-1101  
DOI: 10.1055/s-0031-1289735
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Unsymmetrically Substituted 4,6,10-Trihydroxy-1,4,6,10-tetra­azaadamantanes via Intramolecular Cyclization of Tris(β-oximinoalkyl)amines

Artem N. Semakin, Alexey Yu. Sukhorukov*, Yulia V. Nelyubina, Sema L. Ioffe, Vladimir A. Tartakovsky
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russian Federation
Fax: +7(499)1355328; e-Mail: sukhorukov@server.ioc.ac.ru;
Further Information

Publication History

Received 30 December 2011
Publication Date:
05 March 2012 (online)

Abstract

The cyclotrimerization of oximino groups in unsymmetrically substituted tris(β-oximinoalkyl)amines was studied. A general approach to the synthesis of 4,6,10-trihydroxy-1,4,6,10-tetraazaadamantanes containing different substituents at bridgehead carbon atoms was developed from available aliphatic nitro compounds.

    References

  • For application of urotropin, see, for example:
  • 1a Seneca H. Peer P. Med. Times  1969,  97:  243 
  • 1b Salamone JS. Polymeric Material Encyclopedia   CRC Press; New York: 1996.  p.5036 
  • 2 Semakin AN. Sukhorukov AYu. Lesiv AV. Ioffe SL. Lyssenko KA. Nelyubina YuV. Tartakovsky VA. Org. Lett.  2009,  11:  4072 
  • 3 For application of 1,4,6,10-tetraazaadamantanes in the design of water-soluble bioactive molecules, see: Tolbin AYu. Sukhorukov AYu. Ioffe SL. Lobach OA. Nosik DN. Tomilova LG. Mendeleev Commun.  2010,  1:  25 
  • 4 Semakin AN. Sukhorukov AYu. Ioffe SL. Tartakovsky VA. Synthesis  2011,  1403 
  • 5a Ioffe SL. In Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis   Feuer H. Wiley Interscience; Hoboken: 2008.  p.604 
  • 5b Dilman AD. Tishkov AA. Lyapkalo IM. Ioffe SL. Strelenko YuA. Tartakovsky VA. Synthesis  1998,  181 
  • 5c Dilman AD. Tishkov AA. Lyapkalo IM. Ioffe SL. Kachala VV. Strelenko YuA. Tartakovsky VA. J. Chem. Soc., Perkin Trans. 1  2000,  2926 
  • 6 Bernier D. Blake A. Woodward S. J. Org. Chem.  2008,  73:  4229 
  • 7 For the relative steric size of different substituents, see: Meyer AY. J. Chem. Soc., Perkin Trans. 2  1986,  1567 
  • 10 Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr.  2008,  64:  112 
  • 11 Gotlieb HE. Korlyar V. Nudelman A. J. Org. Chem.  1997,  62:  7512 
8

An additional role of acetic acid may involve quaternization of the bridgehead nitrogen atom in tetraazaadamantanes 2, which shifts the equilibrium between 1 and 2 towards 2.²

9

X-ray data for 2(4e)˙7H2O: Empirical formula: C36H68Br2N8O17; M = 1044.80; triclinic; space group P1; T = 103 K; a = 8.4154(6), b = 10.0049(7), c = 14.4240(11) Å, α = 87.414(2), β = 86.468(2), γ = 83.935(3)˚; V = 1204.43(15) ų; Z = 1; dcalc = 1.440 gcm; µ(MoK α) = 17.57 cm; F(000) = 546. Intensities of 13428 reflections were measured with a Bruker SMART APEX2 CCD diffractometer [λ(MoK α) = 0.71072Å, ω-scans, 2θ<58˚], and 6386 independent reflections [R int = 0.0342] were used in further refinement. The structure was solved by direct methods and refined by the full-matrix least-squares technique against F² in the anisotropic-isotropic approximation. The hydrogen atoms of OH groups and those of water molecules were found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in the isotropic approximation within the riding model. For 2(4e)˙7H2O, the refinement converged to wR2 = 0.0840 and GOF = 1.002 for all the independent reflections (R1 = 0.0494 was calculated against F for 3820 observed reflections with I>2σ(I)). All calculations were performed using SHELXTL PLUS 5.0.¹0 CCDC-843973 contains the supplementary crystallographic data for 2(4e)˙7 H2O. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge, CB21EZ, UK; or deposit@ccdc.cam.ac.uk).