Introduction

Sodium sulfide is pink to yellowish solid with a rotten egg-like odor. It is readily soluble in water, slightly soluble in alcohol and insoluble in ether. Anhydrous sodium sulfide can ignite spontaneously when exposed to air. It is used in chemical manufacturing as a sulfonation and sulfomethylation agent. It is used in the production of rubber chemicals, sulfur dyes, and other chemical compounds. It has also been used as a reducer for the reduction of nitro compounds to the corresponding amines. It was found to be useful for the conversion of carboxylic acids into thioacids and alkenoyl ketene dithioacetals into the corresponding [5+1]-annulation products as well as for the synthesis of thiofuranose, cyclic dithiocarbonates, tetrahydrothiophene derivatives, 4-bromo-2-nitrobenzenethiol, a-lipoic acid, thieno[2,3-c]pyrazoles, unsaturated thiacrown ethers, thieno[3,2-c]cinnoline, monomeric cyclic diketosulfides, thiophenes, 2H-thiochromen-4-ones and benzothiophenes. It can also act as an atom-economical inorganic nucleophile in transition-metal-catalyzed allylation substitutions. Willgerodt–Kindler reaction between anilines and benzaldehydes has also been achieved by the use of Na2S·9H2O as a base catalyst.

Sodium sulfide is commercially available and it can be readily prepared by reduction of Na2SO4 with carbon or through a solid–gas reaction of a sulfidizing gas mixture of COS, CS2, and S2 with the reactant of Na2CO3.

Abstracts

(A) **Thionation of Carbonyl Compounds:**
Salama and co-workers have found that a combination of tetrachlorosilane and sodium sulfide in acetonitrile is an efficient thionating reagent for aromatic aldehydes to afford the corresponding thioaldehydes as trimers in good yields in the absence of catalysis. Under these mild conditions α,β-unsaturated ketones reacted with SiCl4/Na2S in the presence of a catalytic amount of CoCl2·6H2O to give the respective disulfides via β-mercapto ketones.

(B) **Regioselective Ring Opening of Epoxides:**
Na2S can be applied as a mild sulfur nucleophile for regioselective ring opening of epoxides to give the corresponding bis[β-hydroxyalkyl]sulfides in the presence of poly[N-(2-aminoethyl)acrylamido]trimethyl ammonium chloride resin as a phase-transfer catalyst. The reaction of 2,2-bis(trifluoromethyl)oxiranes with aqueous solution of Na2S leads to the formation of S[CH2C(CF3)2OH].

(C) **Divinylsulfides:**
A convenient and practical method for the direct synthesis of bis(arylviny1)sulfides by the addition of sodium sulfide to arylacetylenes has been developed. These sulfides can be converted chemoselectively into the sulfoxides and sulfones.

SYNLETT 2011, No. 18, pp 2759–2760
Advanced online publication: 25.10.2011
DOI: 10.1055/s-0031-1289560; Art ID: V37911ST
© Georg Thieme Verlag Stuttgart · New York
Symmetrical Alkyl Disulfides:
A mild and practical method for the synthesis of symmetrical alkyl disulfides from alkyl halides and a mixture of Na₂S with sulfur using didecyldimethylammonium bromide (DDAB) as a phase-transfer catalyst has been developed. The reactivity order was found to be: didecyldimethylammonium bromide (DDAB) as a phase-transfer catalyst. The reactivity order was found to be: didecyldimethylammonium bromide (DDAB) as a phase-transfer catalyst.

Substituted 2,3,6,7-Tetrahydrothiopyran[2,3-b]thiopyran-4,5-diones:
Pan et al. reported a one-pot approach for the synthesis of disubstituted bicyclic thia-heterocycles via formal double [5+1] annulation reaction of 1,4-dihalides with Na₂S. This protocol allows the formation of two C=S bonds in a one pot reaction through the thiolation annulation of various 1,4-dihalides, including less active dichlorides.

Angular Anthrathiophenediones:
In addition to the above cases, the cyclocondensation of available vic-alkynylchloroanthraquinones with Na₂S is a convenient method for the synthesis of angular anthrathiophenediones.