Boron–Ate Complexes as Chiral Nucleophiles for Asymmetric Synthesis

Significance: The authors report that secondary chiral boronic esters can be converted into reactive nucleophiles by addition of an aryllithium reagent. These enantiomerically enriched nucleophiles react with a broad range of electrophiles with inversion of stereochemistry.

Comment: By changing the substituents on the aryl group on boron, a switch in mechanism from a classical 2e⁻ pathway (nucleophilic substitution) to a radical pathway was observed. Therefore, electron-poor boronic esters favor the desired nucleophilic substitution, whereas electron-rich esters give racemized products.

Selected examples:

- **Ph**
 - 80% yield 100% es
 - E = N-iodosuccinimide
 - Ar = 4-MeOC₆H₄

- **Ph**
 - 85% yield 100% es
 - E = N-bromosuccinimide
 - Ar = 3,5-(CF₃)₂C₆H₃

- **Ph**
 - 66% yield 92% es
 - E = dibenzyl azodicarboxylate
 - Ar = 3,5-(CF₃)₂C₆H₃

- **Ph**
 - 98% yield 100% es
 - E = tropium tetrafluoroborate
 - Ar = 4-MeOC₆H₄

- **4-MeOC₆H₄**
 - 84% yield 100% es
 - E = trichloroisocyanuric acid
 - Ar = 3,5-(CF₃)₂C₆H₃

- **4-MeOC₆H₄**
 - 61% yield 98% es
 - E = trichloroisocyanuric acid
 - Ar = 3,5-(CF₃)₂C₆H₃