Boron–Ate Complexes as Chiral Nucleophiles for Asymmetric Synthesis

Significance: The authors report that secondary chiral boronic esters can be converted into reactive nucleophiles by addition of an aryllithium reagent. These enantiomerically enriched nucleophiles react with a broad range of electrophiles with inversion of stereochemistry.

Comment: By changing the substituents on the aryl group on boron, a switch in mechanism from a classical 2e⁻ pathway (nucleophilic substitution) to a radical pathway was observed. Therefore, electron-poor boronic esters favor the desired nucleophilic substitution, whereas electron-rich esters give racemized products.

Selected examples:

1. Ph^+I^-
 - 80% yield
 - 100% es
 - $E = \text{N-iodosuccinimide}$
 - $\text{Ar} = 4\text{-MeOC}_6\text{H}_4$

2. Ph^+Br^-
 - 85% yield
 - 100% es
 - $E = \text{N-bromosuccinimide}$
 - $\text{Ar} = 3.5\text{-}(\text{CF}_3)_2\text{C}_6\text{H}_3$

3. $\text{Ph}^+\text{NHCO}_2\text{Bn}$
 - 66% yield
 - 92% es
 - $E = \text{dibenzyl azodicarboxylate}$
 - $\text{Ar} = 3.5\text{-}(\text{CF}_3)_2\text{C}_6\text{H}_3$

4. $\text{Ph}^+\text{CO}_2\text{t-Bu}^-$
 - 98% yield
 - 100% es
 - $E = \text{tropylium tetrafluoroborate}$
 - $\text{Ar} = 4\text{-MeOC}_6\text{H}_4$

5. Ph^+Cl^-
 - 61% yield
 - 98% es
 - $E = \text{trichloroisocyanuric acid}$
 - $\text{Ar} = 3.5\text{-}(\text{CF}_3)_2\text{C}_6\text{H}_3$

Ar = 4-MeOC$_6$H$_4$, 3.5-(CF$_3$)$_2$C$_6$H$_3$

R^1 = Ar, Ar-substituted Alk

R^2 = Me, Et, i-Bu, allyl, substituted Alk

E = various electrophiles

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.