Catalytic Enantioselective \(\gamma \)-Alkylation of Carbonyl Compounds

Significance: The authors describe a new method for the catalytic enantioselective \(\gamma \)-(and \(\delta \))-alkylation of carbonyl compounds by cross-coupling of \(\gamma \)-(and \(\delta \))-haloamides with alkylboranes. The reaction is catalyzed by nickel and uses a commercially available chiral diamine ligand to achieve high enantiomeric excess.

Comment: The reaction conditions tolerate alkyl chlorides as well as alkyl bromides as suitable electrophilic cross-coupling partners. Also, an aryl metal, a boronate ester, and a secondary alkyl metal compound are able to undergo the stereo-selective cross-coupling with good enantiomeric excess.

Selected examples:

- \(\text{Ph}_2\text{N} \) \(\text{O} \) \(\text{O} \) \(\text{Ph}_2\text{N} \)
 - 63% yield
 - 85% ee

- \(\text{Ph}_2\text{N} \) \(\text{O} \) \(\text{Et} \)
 - 80% yield
 - 89% ee

- \(\text{Ph}_2\text{N} \) \(\text{O} \) \(\text{n-Bu} \)
 - 64% yield
 - 90% ee

- \(\text{Me} \) \(\text{N} \) \(\text{OMe} \) \(\text{Et} \)
 - 75% yield (with 25% KI)
 - 86% ee

- \(\text{Ph}_2\text{N} \) \(\text{O} \) \(\text{Et} \)
 - 74% yield
 - 91% ee

SYNFACTS Contributors: Paul Knochel, Andreas K. Steib

DOI: 10.1055/s-0031-1289345; **Reg-No.:** PI3711SF