AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011

Abstract

Therapeutic drug monitoring (TDM), i.e., the quantification of serum or plasma concentrations of medications for dose optimization, has proven a valuable tool for the patient-matched psychopharmacotherapy. Uncertain drug adherence, suboptimal tolerability, non-response at therapeutic doses, or pharmacokinetic drug–drug interactions are typical situations when measurement of medication concentrations is helpful. Patient populations that may predominantly benefit from TDM in psychiatry are children, pregnant women, elderly patients, individuals with intelligence disabilities, forensic patients, patients with known or suspected genetically determined pharmacokinetic abnormalities or individuals with pharmacokinetically relevant comorbidities. However, the potential benefits of TDM for optimization of pharmacotherapy can only be obtained if the method is adequately integrated into the clinical treatment process. To promote an appropriate use of TDM, the TDM expert group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued guidelines for TDM in psychiatry in 2004. Since then, knowledge has advanced significantly, and new psychopharmacologic agents have been introduced that are also candidates for TDM. Therefore the TDM consensus guidelines were updated and extended to 128 neuropsychiatric drugs. 4 levels of recommendation for using TDM were defined ranging from "strongly recommended" to "potentially useful". Evidence-based "therapeutic reference ranges" and "dose related reference ranges" were elaborated after an extensive literature search and a structured internal review process. A "laboratory alert level" was introduced, i.e., a plasma level at or above which the laboratory should immediately inform the treating physician. Supportive information such as cytochrome P450 substrate- and inhibitor properties of medications, normal ranges of ratios of concentrations of drug metabolite to parent drug and recommendations for the interpretative services are given. Recommendations when to combine TDM with pharmacogenetic tests are also provided. Following the guidelines will help to improve the outcomes of psychopharmacotherapy of many patients especially in case of pharmacokinetic problems. Thereby, one should never forget that TDM is an interdisciplinary task that sometimes requires the respectful discussion of apparently discrepant data so that, ultimately, the patient can profit from such a joint effort.

Introduction

In psychiatry, around 130 drugs are now available which have been detected and developed during the last 60 years [54]. These drugs are effective and essential for the treatment of many psychiatric disorders and symptoms. Despite enormous medical and economic benefits, however, therapeutic outcomes are still far from satisfactory for many patients [5,6,396,661]. Therefore, after having focused clinical research on the development of new drugs during more than 5 decades [521,522], growing evidence suggests that improving the way the available medications are administered may bring substantial benefit to patients [45]. Evidence-based guidelines for optimum treatment have been published during the last decade [23,46,101,204,205,221,234,254,276,284,582,585,748]. A valuable tool for tailoring the dosage of the prescribed medication(s) to the individual characteristics of a patient is therapeutic drug monitoring (TDM). The major reason to use TDM for the guidance of psychopharmacotherapy is the...
considerable interindividual variability in the pharmacokinetic properties of the patient [524,526]. At the very same dose, a more than 20-fold interindividual variation in the medication's steady state concentration in the body may result, as patients differ in their ability to absorb, distribute, metabolize and excrete drugs due to concurrent disease, age, concomitant medication or genetic peculiarities [61,94,310,311,334,335,374]. Different formulations of the same medication may also influence the degree and temporal pattern of absorption and, hence, medication concentrations in the body. TDM uses the quantification of drug concentrations in blood plasma or serum to titrate the dose of individual patients so that a drug concentration associated with highest possible probability of response and tolerability and a low risk of toxicity can be obtained. Moreover, TDM has the possible and widely unexploited potential to improve cost-effectiveness of psychopharmacotherapy [527,660]. For a considerable number of psychopharmacologic compounds, the quantification of the medications' plasma concentration has become clinical routine for dose adjustment. Clear evidence of the benefits of TDM has been given for tricyclic antidepressants, a number of old and new antipsychotic drugs and for conventional mood stabilizing drugs [51,459,505]. For lithium, TDM has become a standard of care due to its narrow therapeutic range [133,395].

The benefits of TDM regarding the optimization of pharmacotherapy, however, can only be obtained if the method is adequately integrated into the clinical treatment process. Current TDM use in psychiatric care is obviously suboptimal [134,700,742]. Similar to other medical disciplines, systematic studies have demonstrated that the inappropriate use of TDM is widespread. Inappropriate TDM testing wastes laboratory resources and also bears the risk that misleading results will adversely influence clinical decision making [122]. A study on the clinical use of TDM for tricyclic antidepressants in psychiatric university hospital settings showed that between 25 and 40% of the requests for TDM were inappropriate and the interpretation of the results led to about 20% of inappropriate therapeutic adjustments [700,742]. Other typical errors were absence of steady-state conditions and transcription errors on the request form [700,743]. Studies on TDM for antidepressant and mood stabilizing drugs further specified the information on the inappropriate use of TDM [420,421].

Against this background, the TDM group of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) issued best practice guidelines for TDM in psychiatry in 2004 [51]. These guidelines were widely accepted by many laboratories and practicing clinicians. They have been cited more than 200 times in the literature and were translated into German [312] and French [50]. Moreover, they were summarized for depression [52]. The AGNP-TDM consensus guidelines have also been implemented in recent international guidelines on the treatment of mental diseases [582]. Since 2004, knowledge on TDM has advanced significantly. New psychotropic medications have been introduced which are also candidates for TDM. The TDM group of the AGNP therefore decided to prepare an updated version of their guidelines.

Objectives of this Consensus Document

This document addresses topics related to the theory and practice of TDM in psychiatry. The first part deals with theoretical aspects of monitoring drug plasma concentrations. The second part defines indications for TDM and gives reference drug plasma concentrations for dose optimization. The third part describes the best practice of the process of TDM, which starts with the request and ends with the clinical decision to either continue or change the pre-TDM pharmacotherapy. Aiming to optimise the practice of TDM the following topics were addressed:

▶ definition of indications to utilize TDM in psychiatry
▶ definition of graded levels of recommendations to use TDM
▶ definition of therapeutic reference ranges (“therapeutic windows”) and dose-related reference ranges that laboratories can quote and clinicians can use to guide the psychopharmacotherapy
▶ definition of alert levels for laboratories to warn the treating physician when plasma concentrations are considered to be too high and potentially harmful
▶ recommendations and help for interpretative services
▶ recommendations concerning the combination of TDM with pharmacogenetic tests

Preparation of the Consensus Document

The updated consensus guidelines were prepared by the interdisciplinary TDM group of the AGNP consisting of clinical psychiatrists, pharmacologists, biochemists, pharmacists and chemists from academic and non academic hospitals and institutions of Germany, Switzerland, Austria and Italy, who have been involved for many years in the development and implementation of TDM for psychotropic medications in everyday clinical practice. The experts compiled information from the literature and worked out the present best practice guidelines aiming at promoting the appropriate use of TDM in psychiatry. Because TDM is widely used in daily clinical practice for antidepressant, antipsychotic and mood stabilizing drugs, these 3 pharmacologic classes are extensively represented in the present guidelines. Anxiolytic and hypnotic drugs, antidepressant drugs, drugs for treatment of substance abuse related disorders and other psychotropic drugs are also candidates for TDM and are thus covered in the present guidelines. In special situations, the measurement of drug plasma concentrations can be helpful for any drug. Many patients are simultaneously treated for neurologic and psychiatric disorders. Therefore, the updated guidelines also contain information on anticonvulsant and antiparkinson drugs which are also more or less well established candidates for TDM [481,499] and were thus extended from 65 psychiatric drugs in 2004 [51] to 128 neuropsychiatric drugs at present.

Data published in the AGNP consensus guidelines 2004 [51] and other guidelines and recommendations for TDM of primarily antidepressant and antipsychotic drugs [317,400,488–490,504,505] were initially used as the basis for this update. An extensive literature search was conducted, primarily in MEDLINE, to identify TDM-related information for the surveyed 128 neuropsychiatric drugs. The search concentrated on reports on “optimum plasma concentrations”, “dose related drug plasma concentrations”, “cytochrome P450 substrate, inducer and inhibitor properties” and on "ratios of concentrations of drug metabolites to parent drugs". Relevant reports were also searched by hand in pharmacologic and clinical chemical journals dealing with TDM. Over 1000 articles were assessed and
analysed. Extracted data on reference ranges were listed in tables by 7 authors (CH, EH, CG, BR, PR, HK). Results of the literature search and analyses were sent out for review to 20 members of the TDM group with inclusion of a checklist how to extract and analyse the data. An internet based and password-protected platform was built up for the reviewers to have access to relevant articles. The reviewers’ protocols and commentaries were distributed to all authors of these guidelines. Final decisions on data reported in this document were made during 2 consensus conferences and by e-mail communication. Consensus making also included definitions of reference ranges, alert levels and graded levels of recommendations to utilize TDM.

Theoretical Aspects of TDM in Psychiatry

Pharmacokinetics, metabolism and pharmacogenetics of neuropsychiatric drugs

Most psychotropic drugs share a number of pharmacokinetic characteristics

- good absorption from the gastrointestinal tract within plasma concentrations reaching a maximum within 1–6 h
- highly variable first-pass metabolism (systemic bioavailability ranging 5–90%)
- fast distribution from plasma to the central nervous system with 2- to 40-fold higher levels in brain than in blood
- high apparent volume of distribution (about 10–50L/kg)
- low trough plasma concentrations under steady-state (about 0.1–500 ng/mL for psychoactive drugs and up to 20μg/mL for neurological drugs)
- slow elimination from plasma (half-life 12–36 h) mainly by hepatic metabolism
- linear pharmacokinetics at therapeutic doses which has the consequence that doubling the daily dose will result in a doubling of the plasma level
- low renal excretion with small effect of renal insufficiency on the plasma concentrations of parent drug and active metabolites
- cytochrome P450 (CYP) and UDP-glucuronosyltransferases as major metabolic enzyme systems

There are, however, numerous exceptions. For example, venlafaxine, nefazodone, trazodone, tranylcypromine, moclobemide, quetiapine, rivastigmine and ziprasidone display short (about 2–10 h) elimination half-lives, whereas aripiprazole and fluoxetine have long elimination half-lives (72 h for aripiprazole and 3–15 days for fluoxetine, taking into account its active metabolite norfluoxetine). Amisulpride, milnacipran, memantine, gabapentin, or sulpiride are not or only poorly metabolised in the liver but also mainly excreted renally. Paroxetine exhibits non-linear pharmacokinetics, due to the inhibition of its own metabolism by a metabolite which is irreversibly bound to the enzyme (mechanism based inhibition) resulting in its inactivation [69].

Many psychotropic drugs are used as racemic compounds, and their enantiomers differ markedly in their pharmacology, metabolism and pharmacokinetics [53, 605]. So far however, methadone, mephedone and flupentixol are at present the only racemic psychotropic compounds for which TDM of the enantiomers has been introduced [39, 189]. The active principles of racemic methadone and fluoxetine are (R)-methadone and cis- (Z)-fluoxetine, respectively. For research projects and other special situations, stereoselective analysis should be considered, e.g., for citalopram, fluoxetine, reboxetine, venlafaxine, paliperidone or amisulpride metabolites.

Most psychotropic drugs undergo phase-I metabolism by oxidative (e.g., hydroxylation, dealkylation, oxidation to N-oxides, S-oxidation to sulfoxides or sulfones), reductive (e.g., carbonyl reduction to secondary alcohols) or hydrolytic reactions, dealkylation, oxidation to N-oxides, carbonyl reduction to secondary alcohols or S-oxidation to sulfoxides or sulfones. The phase-I reactions are predominantly catalysed by cytochrome P450 (CYP) enzymes which comprise more than 200 isoenzymes. The most important isoenzymes for psychotrophic medications are CYP1A2, CYP2B6, CYP2D6, CYP2C9, CYP2C19 and CYP3A4/5 (Table 1) [745–747]. In general, phase-I reactions introduce a polar functional group that enables a phase-II conjugation reaction with highly polar molecules such as glucuronic or sulphuric acid. For psychotropic compounds possessing functional groups in the parent compound, glucuronidation of a hydroxyl group (for example oxazepam or lorazepam) or an N-H group (for example olanzapine) may represent the essential metabolic pathway. In addition, tertiary amine groups can be conjugated with the formation of quaternary ammonium glucuronides. Actually, phase II enzymes are poorly characterised with regard to substrate specificity, and there is much overlap between the isozymes regarding affinity for substrates [143]. Other enzymatic systems may also be involved, such as ketoaldehyde oxidases [43], which have been shown to reduce ziprasidone to its dihydro-derivative [58] or naltrexone to naltrexol [92], or MAO-A and MAO-B, which deaminate citalopram stereoselectively to an apparently inactive acidic metabolite [562].

Some are metabolised mainly in the liver and, to a minor degree, in extrahepatic tissues such as the intestinal mucosa or the brain [59, 238, 444]. Inter- and intra-individual differences in plasma concentrations of psychotropic drugs (i.e., the pharmacokinetic variability) are caused by different activities of drug-metabolising enzymes. The enzyme activity may decrease with age [374] and can be modified by renal and hepatic diseases. Gender differences have been reported for psychotropic drugs, but the findings are inconsistent and the clinical relevance is not clear [7–9, 608].

For a number of psychoactive drugs, metabolites actively contribute to the overall clinical effect of the parent compound. For this reason, TDM must include the quantification of active metabolites, e.g., in the case of clomipramine (norclomipramine), doxepin (nordoxepin), fluoxetine (norfluoxetine) or risperidone (9-hydroxyrisperidone). For drugs like sertraline or clozapine, the clinical relevance of their metabolites norsertraline and norclozapine, respectively, is still a matter of debate. The analysis of pharmacologically inactive metabolites, however, may give useful information on the metabolic state of the patient or on his/her compliance [105, 569]. Table 2 shows the “normal” ratios of concentrations of metabolites to parent drugs. Calculated ranges contain 68% of the ratios expected under standard dosages, i.e., ratios within the range of the mean±1 SD assuming normal distribution. A ratio above or below the “normal ratio” (Table 2) can indicate problems of drug adherence [546] or metabolic abnormalities due to a genetic variation [157, 159, 350, 592] or a drug-drug interaction. Spina and co-workers [618] have shown this for the conversion of 2-hydroxy-desipramine to desipramine. With regard to drug-drug interactions, ratios increase if the enzymatic conversion of the parent medication is induced by concurrent psychotropic or non-psychotropic medications or pharmacokinetically relevant activities such as smoking (Table 3). Other co-medications and food
Table 1 Psychopharmacologic medications and enzymes involved in their metabolism.

<table>
<thead>
<tr>
<th>Drug (active metabolite)</th>
<th>Enzymes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acamprosate</td>
<td>not involved (not metabolized)</td>
<td>[578]</td>
</tr>
<tr>
<td>Agomelatine</td>
<td>CYP1A2, CYP2C19</td>
<td>[78]</td>
</tr>
<tr>
<td>Amantadine</td>
<td>merely involved (90% excreted unmetabolized)</td>
<td>[24]</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>CYP3A4/5</td>
<td>[17, 496]</td>
</tr>
<tr>
<td>Amisulpride</td>
<td>merely involved (more than 90% is excreted unmetabolized via the kidney)</td>
<td>[566]</td>
</tr>
<tr>
<td>Amitriptyline and amitriptyline oxide (amitriptyline, nortriptyline)</td>
<td>CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4</td>
<td>[90, 650, 713]</td>
</tr>
<tr>
<td>Aripiprazole (dehydroaripiprazole)</td>
<td>CYP2D6, CYP3A4</td>
<td>[306, 701]</td>
</tr>
<tr>
<td>Asenapine</td>
<td>Glucuronosyltransferase and CYP1A2</td>
<td>[707]</td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>CYP2D6</td>
<td>[446]</td>
</tr>
<tr>
<td>Benperidol</td>
<td>unclear</td>
<td>[589]</td>
</tr>
<tr>
<td>Benserazide</td>
<td>hydroxylation, COMT</td>
<td>[347]</td>
</tr>
<tr>
<td>Biperiden</td>
<td>hydroxylation</td>
<td>[628]</td>
</tr>
<tr>
<td>Bromocriptine</td>
<td>CYP3A4</td>
<td>[513]</td>
</tr>
<tr>
<td>Bromperidol</td>
<td>CYP3A4</td>
<td>[230, 633, 645, 736]</td>
</tr>
<tr>
<td>Brotizolam</td>
<td>CYP3A4</td>
<td>[655]</td>
</tr>
<tr>
<td>Buprenorphine (norphrenorphine)</td>
<td>CYP2C8, CYP3A4</td>
<td>[79, 454]</td>
</tr>
<tr>
<td>Bupropion (hydroxybupropion)</td>
<td>CYP2B6</td>
<td>[309]</td>
</tr>
<tr>
<td>Buspirone</td>
<td>CYP3A4</td>
<td>[416]</td>
</tr>
<tr>
<td>Cabergoline</td>
<td>hydrolysis, CYP3A4</td>
<td>[167]</td>
</tr>
<tr>
<td>Carbamazepine, CBZ (CBZ-10,11-epoxide)</td>
<td>CYP1A2, CYP2B6, CYP2C8, CYP3A4/5</td>
<td>[360, 497]</td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>CYP1A2, CYP2D6</td>
<td>[724]</td>
</tr>
<tr>
<td>Citalopram</td>
<td>CYP2C19, CYP2D6, CYP3A4</td>
<td>[97, 227, 739]</td>
</tr>
<tr>
<td>Clomipramine (norconlomipramine)</td>
<td>CYP1A2, CYP2C19, CYP2D6, CYP3A4</td>
<td>[244]</td>
</tr>
<tr>
<td>Clomethiazol</td>
<td>CYP2A6, CYP2B6, CYP3A4</td>
<td>[116]</td>
</tr>
<tr>
<td>Clozapine</td>
<td>CYP1A2, CYP2C19, CYP3A4</td>
<td>[334, 487]</td>
</tr>
<tr>
<td>Desipramine</td>
<td>CYP2D6</td>
<td>[244]</td>
</tr>
<tr>
<td>Diazepam (nordiazepam, oxazepam, temazepam)</td>
<td>CYP2B6, CYP2C19, CYP3A4</td>
<td>[228, 704]</td>
</tr>
<tr>
<td>Dihydroergocryptine</td>
<td>CYP3A4</td>
<td>[19, 162]</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>CYP2D6</td>
<td>[13]</td>
</tr>
<tr>
<td>Disulfiram</td>
<td>CYP1A2, CYP2B6, CYP2E1, CYP3A4</td>
<td>[412]</td>
</tr>
<tr>
<td>Donepezil</td>
<td>CYP2D6, CYP3A4</td>
<td>[681]</td>
</tr>
<tr>
<td>Dothiepin = Dosulepin</td>
<td>CYP2C19, CYP2D6</td>
<td>[740]</td>
</tr>
<tr>
<td>Doxepin (nordoxepin)</td>
<td>CYP2C9, CYP2C19, CYP2D6</td>
<td>[295, 365]</td>
</tr>
<tr>
<td>Duloxetine</td>
<td>CYP1A2, CYP2D6</td>
<td>[405]</td>
</tr>
<tr>
<td>Entacapone</td>
<td>Glucuronosyltransferase</td>
<td>[387]</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>CYP2C19, CYP2D6, CYP3A4</td>
<td>[662, 697]</td>
</tr>
<tr>
<td>Fluoxetine (norfluoxetine)</td>
<td>CYP2B6, CYP2C9, CYP2C19, CYP2D6</td>
<td>[404, 588]</td>
</tr>
<tr>
<td>Flupenthoxil</td>
<td>CYP2D6</td>
<td>[148, 365]</td>
</tr>
<tr>
<td>Fluphenazine</td>
<td>CYP2D6</td>
<td>[746]</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>CYP2D6, CYP1A2</td>
<td>[354, 450]</td>
</tr>
<tr>
<td>Galantamine</td>
<td>CYP2D6, CYP3A4</td>
<td>[34]</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>unmetabolized renal excretion</td>
<td>[77]</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>CYP2D6, CYP3A4</td>
<td>[93, 645]</td>
</tr>
<tr>
<td>Iloperidone</td>
<td>CYP2D6, CYP3A4</td>
<td>[106]</td>
</tr>
<tr>
<td>Imipramine (desipramine)</td>
<td>CYP1A2, CYP2C19, CYP2D6, CYP3A4</td>
<td>[244, 413]</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>Glucuronosyltransferase, CYP2A6</td>
<td>[121]</td>
</tr>
<tr>
<td>Levodopa</td>
<td>Dopadecarboxylase, COMT, MAO</td>
<td>[575]</td>
</tr>
<tr>
<td>Levomepromazine</td>
<td>CYP1A2, CYP2D6</td>
<td>[36]</td>
</tr>
<tr>
<td>Levemethadon</td>
<td>CYP2C19, CYP2B6, CYP3A4, CYP2D6</td>
<td>[145]</td>
</tr>
<tr>
<td>Lisuride</td>
<td>CYP3A4, CYP2D6</td>
<td>[539]</td>
</tr>
<tr>
<td>Lithium</td>
<td>no metabolism, renal clearance</td>
<td>[256, 619]</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>Glucuronosyltransferase</td>
<td>[164, 196]</td>
</tr>
<tr>
<td>Maprotiline</td>
<td>CYP2D6, CYP1A2</td>
<td>[86]</td>
</tr>
<tr>
<td>Melatonin</td>
<td>CYP1A2</td>
<td>[296]</td>
</tr>
<tr>
<td>Memantine</td>
<td>merely metabolized</td>
<td>[251]</td>
</tr>
<tr>
<td>Methadone</td>
<td>CYP2B6, CYP2C19, CYP3A4, CYP2D6</td>
<td>[145]</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>Carboxylesterase 1</td>
<td>[468]</td>
</tr>
<tr>
<td>Mianserin</td>
<td>CYP2D6, CYP1A2, CYP3A4</td>
<td>[379]</td>
</tr>
<tr>
<td>Midazolam</td>
<td>CYP3A4</td>
<td>[220]</td>
</tr>
<tr>
<td>Milnacipran</td>
<td>no CYP related metabolism</td>
<td>[495, 533]</td>
</tr>
</tbody>
</table>
which inhibit metabolic enzymes may decrease the ratio. Table 3 summarises drugs that are inhibitors or inducers of CYP enzymes and thus may lead to clinically relevant pharmacokinetic drug-drug interactions.

Pharmacogenetic aspects

The clinical importance of pharmacogenetic factors in the pharmacokinetics and pharmacodynamics of psychotropic drugs is increasingly recognised [156,199,457]. Drug-metabolising enzymes, especially CYP isoenzymes, exhibit genetic variability [745–747]. When the frequency of a deviation in the alleles is at least 1% of the population, it is considered a genetic polymorphism. The number of active alleles in a gene determines how much of the enzyme is expressed (phenotype). Poor metabolisers (PM) lack functional alleles. Intermediate metabolisers (IM) are either genetically heterozygous, carrying an active and an inactive allele (or an allele with reduced activity) or have 2 alleles with reduced activity. Extensive metabolisers (EM) are wild-type with 2 active alleles, and ultra-rapid metabolisers (UM) have an amplification of functional alleles [66]. Genetic polymorphisms of drug-metabolising enzymes may be clinically important, because unexpected adverse reactions and toxicity may occur in PM due to increased plasma concentrations and non-response may occur in UM due to subtherapeutic plasma concentrations [160]. Prodrugs are activated by metabolism such as codeine by CYP2D6 to morphine or clopidogrel by CYP2C19 to 2-oxoclopidogrel. PM patients will not be able to produce pharmacologically active metabolites. Other enzyme systems such as UDP-glucuronosyltransferases also display genetic polymorphism [155], but their clinical relevance in pharmacopsychiatry is unclear. CYP genotyping methods are becoming more and more available, and guidelines have been published for their use in clinical practice [675]. The functional significance of many genotypes,
however, is unclear. For some enzymes, a genetic polymorphism is not clearly demonstrated despite the fact that they display a wide interindividual variability in their activity. Therefore it may be advantageous to use phenotyping methods with probe drugs such as caffeine for CYP1A2, omeprazole for CYP2C19, dextromethorphan for CYP2D6, or midazolam for CYP3A4/5 [403, 643]. Phenotyping measures the metabolic situation of the patient at the moment of the test, and allows to follow its evolution. The measurement, however, may be influenced by environmental factors such as smoking or comedication [201, 601, 749]. The clear advantage of genotyping is that it represents a “trait marker” and that its result is not influenced by environmental factors. It can be carried out in any situation and its result has a lifetime value.

Table 2

<table>
<thead>
<tr>
<th>Drug</th>
<th>Metabolite</th>
<th>Ratios of concentrations metabolite: parent drug (Mean ± SD – Mean + SD)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptyline</td>
<td>Nortriptyline*</td>
<td>0.2–1.8 (n = 83)</td>
<td>[545]</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>Dehydroariprazole(*)</td>
<td>0.3–0.5</td>
<td>[306, 368, 452]</td>
</tr>
<tr>
<td>Bromperidol</td>
<td>Reduced bromperidol</td>
<td>0.11–0.51 (n = 31)</td>
<td>[609, 633]</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>Norbuprenorphine</td>
<td>0.8–2.0 (n = 5)</td>
<td>[383]</td>
</tr>
<tr>
<td>Bupropion</td>
<td>Hydroxybupropion</td>
<td>5–47 (24h, n = 9)</td>
<td>[152, 253, 336]</td>
</tr>
<tr>
<td>Buspirone</td>
<td>6-Hydroxybuspirone</td>
<td>25–53 (n = 20)</td>
<td>[178]</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Carbamazepine-10,11-epoxide</td>
<td>0.07–0.25 (n = 14)</td>
<td>[338]</td>
</tr>
<tr>
<td>Citalopram</td>
<td>N-Desmethylcitalopram</td>
<td>0.31–0.60 (n = 2330)</td>
<td>[549]</td>
</tr>
<tr>
<td>Clomipramine</td>
<td>Norclomipramine*</td>
<td>0.8–2.6 (n = 115)</td>
<td>[545]</td>
</tr>
<tr>
<td>Clozapine</td>
<td>Norclozapine(*)</td>
<td>0.5–0.6 (n = 98)</td>
<td>[140, 308, 500]</td>
</tr>
<tr>
<td></td>
<td>nonsmokers (n = 198)</td>
<td>0.4–0.7</td>
<td></td>
</tr>
<tr>
<td>Dadoxin</td>
<td>Nordoxepin</td>
<td>0–1.4 (n = 50)</td>
<td>[325]</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>N-Demethylescitalopram</td>
<td>0.3–1.0 (n = 243)</td>
<td>[548]</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>Norfluoxetine*</td>
<td>0.7–1.9 (n = 334)</td>
<td>[545]</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>Fluvoxamino acid</td>
<td>0–1.2 (n = 49)</td>
<td>[237]</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>Reduced haloperidol</td>
<td>mean 0.6</td>
<td>[673]</td>
</tr>
<tr>
<td>Imipramine</td>
<td>Desipramine</td>
<td>0.6–3.2 (n = 14)</td>
<td>[95, 96, 632]</td>
</tr>
<tr>
<td></td>
<td>PM CYP2D6: 0.8 (n = 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maprotiline</td>
<td>Desmethylmaprotiline</td>
<td>1.1–3.7 (n = 76)</td>
<td>[699]</td>
</tr>
<tr>
<td>Mianserin</td>
<td>N-Desmethylinianserin</td>
<td>0.5–0.8 (n = 182)</td>
<td>[545]</td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>N-DesmethyLMirtazapine</td>
<td>0.2–1.2 (n = 100)</td>
<td>[591]</td>
</tr>
<tr>
<td>Moclobemide</td>
<td>Moclobemide N oxide</td>
<td>0.8–2.5 (n = 6)</td>
<td>[291]</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>N-Demethylolanzapine</td>
<td>non smokers: 0.1–0.3 (n = 76) smokers: 0.2–0.4 (n = 69)</td>
<td>[602]</td>
</tr>
<tr>
<td>Perazine</td>
<td>Desmethylperazine</td>
<td>1.1–3.3 (n = 27)</td>
<td>[91]</td>
</tr>
<tr>
<td>Perhexazine</td>
<td>N-Dealkylperhexazine</td>
<td>0.6–2.8 (n = 54)</td>
<td>[637]</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>Norquetiapine</td>
<td>0.1–3.8 (n = 25) (calculated for 400 mg)</td>
<td>[723]</td>
</tr>
<tr>
<td>Reboxetine</td>
<td>O-Desethylreboxetine</td>
<td><0.1</td>
<td>[484]</td>
</tr>
<tr>
<td>Risperidone</td>
<td>9-Hydroxyrisperidone*</td>
<td>EM or IM CYP2D6: 1.5–10.0 (n = 4) PM CYP2D6: ≤ 1</td>
<td>[159, 677]</td>
</tr>
<tr>
<td>Risperidone depot</td>
<td>9-Hydroxyrisperidone*</td>
<td>EM: 1.2–4.3</td>
<td>[469]</td>
</tr>
<tr>
<td>Sertindole</td>
<td>Dehydrosertindole</td>
<td>1.1–2.7 (n = 6)</td>
<td>[729]</td>
</tr>
<tr>
<td></td>
<td>1.0 in PM of CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sertraline</td>
<td>Norsertraline</td>
<td>1.7–3.4 (n = 348)</td>
<td>[546]</td>
</tr>
<tr>
<td>Trazodone</td>
<td>m-Chlorophenylpiperazine (mCPP)</td>
<td>0.04–0.22 (total range)</td>
<td>[328]</td>
</tr>
<tr>
<td>Trimipramine</td>
<td>Nortrimipramine*</td>
<td>0–12.0 (n = 17)</td>
<td>[142]</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>O-Desmethylvenlafaxine*</td>
<td>EM or IM CYP2D6: 0.3–5.2 (n = 4) PM CYP2D6: ≤ 0.3 UM CYP2D6: > 5.2</td>
<td>[592]</td>
</tr>
<tr>
<td></td>
<td>N-Desmethylvenlafaxine</td>
<td>0.46–1.48</td>
<td></td>
</tr>
</tbody>
</table>

pharmacologically active metabolite, () active metabolite in vitro but unclear under in vivo conditions

When SD values of ranges of ratios (SD ratios) were not reported in the literature, SD ratios were calculated in accordance with Gaussian’s law for the propagation of errors: SD ratio = \((SD_{parent \ drug} \times \text{mean metabolite}) + (SD_{metabolite} \times \text{mean parent drug}) / \text{mean metabolite}^2\)

Prepared by CH, reviewed by Sonja Brünen, Christiane Knoth, Elnaz Ostad Haji and Viktoria Steffenhofer
Recent investigations indicate that the drug efflux transporter P-glycoprotein (P-gp) in the intestinal mucosa and blood-brain-barrier is also relevant for the pharmacokinetic variability of psychotropic medications [1]. This protein, a member of the ATP-cassette binding (ABC) transporter protein family, is encoded by the multidrug resistance gene (MDR1; ABCB1). It displays a genetic polymorphism, but as yet, mainly genotyping but not phenotyping (e.g., with digoxin) is more commonly used [129, 183, 210, 389]. Genetic polymorphism of P-gp may be of the same considerable clinical relevance as has been demonstrated for drug-metabolizing enzymes. For antidepressant drugs that are substrates of P-gp, a genotype dependent association of drug response was found [668, 669]. Both plasma concentrations of quetiapine and its clinical effects have been shown to depend on the P-gp genotype of patients suffering from schizophrenia [470]. With regard to the occurrence of wanted or unwanted clinical effects of psychoactive drugs, some first reports suggest the influence of the genetic polymorphism of P-gp [279, 560]. However, further research is needed to evaluate the clinical relevance of the genetic polymorphisms of drug transporters.

Dose and drug concentration in blood

In most situations that use TDM for dose optimization, drugs are administered in a series of repeated doses to attain a steady-state concentration within a given therapeutic reference range. Steady-state is attained when the rate of medication input equals the rate of medication loss, i.e., approximately after 4 times the elimination half life. With multiple dosing, 94% of the steady-state are achieved after 4 and 97% after 5 elimination half-lives. For more than 90% of all psychoactive medications, such a steady-state is reached within 1 week of maintenance.

Table 3 Inhibitors and inducers of enzymes involved in the metabolism of drug.

<table>
<thead>
<tr>
<th>Inhibiting drugs</th>
<th>Inhibited enzymes</th>
<th>Inducing drugs</th>
<th>Induced enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>CYP2C9, CYP2D6, CYP3A4</td>
<td>Carbamazepine</td>
<td>CYP1A2, CYP2B6, CYP2C9, CYP3A4</td>
</tr>
<tr>
<td>Bupropion</td>
<td>CYP2D6</td>
<td>Dexamethason</td>
<td>CYP2C9, CYP3A4</td>
</tr>
<tr>
<td>Bromocriptine</td>
<td>CYP3A4</td>
<td>Efavirenz</td>
<td>CYP2B6, CYP3A4</td>
</tr>
<tr>
<td>Chindine</td>
<td>CYP2D6</td>
<td>Ethanol</td>
<td>CYP2E1</td>
</tr>
<tr>
<td>Cimetidin</td>
<td>CYP1A2, CYP2D6, CYP3A4</td>
<td>Ginkgo biloba</td>
<td>CYP2C19</td>
</tr>
<tr>
<td>Ciprofloxacain</td>
<td>CYP1A2</td>
<td>Isoniazide</td>
<td>CYP2E1</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>CYP3A4</td>
<td>St. John’s wort</td>
<td>CYP2C19, CYP3A4</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>CYP2B6</td>
<td>Oxybutynin</td>
<td>CYP3A4</td>
</tr>
<tr>
<td>Disulfiram</td>
<td>CYP2E1</td>
<td>Phenobarbital</td>
<td>CYP2C9, CYP2C19, CYP3A4</td>
</tr>
<tr>
<td>Duloxetine</td>
<td>CYP2D6</td>
<td>Phenytoin</td>
<td>CYP2B6, CYP2C9, CYP2C19, CYP3A4</td>
</tr>
<tr>
<td>Enoxacin</td>
<td>CYP1A2</td>
<td>Primidon</td>
<td>CYP2C9, CYP2C19, CYP3A4</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>CYP3A4</td>
<td>Smoke</td>
<td>CYP1A2</td>
</tr>
<tr>
<td>Esomeprazole</td>
<td>CYP2C19</td>
<td>Rifabutin</td>
<td>CYP3A4</td>
</tr>
<tr>
<td>Felbamate</td>
<td>CYP2C19</td>
<td>Rifampin</td>
<td>CYP1A2, CYP2B6, CYP2C9, CYP2C19</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>CYP2C19, CYP2C9, CYP3A4</td>
<td>Ritonavir</td>
<td>CYP3A4, CYP2C9, CYP3A4 (high dose)</td>
</tr>
<tr>
<td>Fluoxetine and norfluoxetine</td>
<td>CYP2D6, CYP2C19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>CYP1A2, CYP2C9, CYP2C19, CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indinavir</td>
<td>CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoniazid</td>
<td>CYP1A2, CYP2A6, CYP2C19, CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazol</td>
<td>CYP2B6, CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketoconazol</td>
<td>CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levomepromazine</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melperone</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metoclopramide</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metoprolol</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miconazol</td>
<td>CYP2C9, CYP2C19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mifepristone</td>
<td>CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moclobemide</td>
<td>CYP2C19, CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>CYP1A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omeprazole</td>
<td>CYP2C19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxetine</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perazine</td>
<td>CYP1A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pergolide</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perphenazine</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propafenon</td>
<td>CYP1A2, CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propranolol</td>
<td>CYP2D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir</td>
<td>CYP2D6, CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saquinavir</td>
<td>CYP3A4, CYP2C9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troleandomycin</td>
<td>CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valproate</td>
<td>CYP2C9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verapamil</td>
<td>CYP3A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voriconazol</td>
<td>CYP2C9, CYP3A4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combination of psychoactive drugs with these inhibitors or inducers can lead to clinically relevant drug-drug interactions (www.mediq.ch or www.psiac.de).
Prepared by CH, reviewed by EJS.
Table 4 Total clearance (Cl), bioavailability (F), dosing intervals (τ) and factors (C/D_low and C/D_high) for calculation of dose-related plasma concentrations (C/D) for psychotropic drugs.

<table>
<thead>
<tr>
<th>Drug</th>
<th>n</th>
<th>Cl – SD – Cl + SD [mL/min]</th>
<th>F</th>
<th>τ [h]</th>
<th>C/D_low [ng/mL/mg]</th>
<th>C/D_high [ng/mL/mg]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressant drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>8</td>
<td>198–373</td>
<td>0.5</td>
<td>24</td>
<td>1.03</td>
<td>1.68</td>
<td>[165]</td>
</tr>
<tr>
<td>Amitriptyline oxide</td>
<td>12</td>
<td>331–539</td>
<td>0.8</td>
<td>24</td>
<td>0.93</td>
<td>1.75</td>
<td>[384]</td>
</tr>
<tr>
<td>Bupropion</td>
<td>17</td>
<td>2500–11 300</td>
<td>1.0</td>
<td>24</td>
<td>0.06</td>
<td>0.28</td>
<td>[665]</td>
</tr>
<tr>
<td>Citalopram</td>
<td>8</td>
<td>367–545</td>
<td>0.8</td>
<td>24</td>
<td>1.02</td>
<td>1.51</td>
<td>[616]</td>
</tr>
<tr>
<td>Clomipramine</td>
<td>9</td>
<td>583–933</td>
<td>0.5</td>
<td>24</td>
<td>0.37</td>
<td>0.60</td>
<td>[198]</td>
</tr>
<tr>
<td>Desipramine</td>
<td>12</td>
<td>1633–2333</td>
<td>0.5</td>
<td>24</td>
<td>0.15</td>
<td>0.21</td>
<td>[2]</td>
</tr>
<tr>
<td>Desvenlafaxine</td>
<td>7</td>
<td>233–396</td>
<td>1.0</td>
<td>24</td>
<td>1.75</td>
<td>2.98</td>
<td>[520]</td>
</tr>
<tr>
<td>Dothiepin = Dosulepin</td>
<td>22</td>
<td>674–3 960</td>
<td>0.3</td>
<td>24</td>
<td>0.05</td>
<td>0.31</td>
<td>[740]</td>
</tr>
<tr>
<td>Antipsychotic drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risperidone, oral</td>
<td>8</td>
<td>91–171</td>
<td>1.0</td>
<td>24</td>
<td>3.50</td>
<td>14.00</td>
<td>[159]</td>
</tr>
<tr>
<td>Haloperidone</td>
<td>6</td>
<td>420–680</td>
<td>0.6</td>
<td>24</td>
<td>0.61</td>
<td>0.99</td>
<td>[123]</td>
</tr>
<tr>
<td>Haloperidone decanoate</td>
<td></td>
<td>420–680</td>
<td>1.0</td>
<td>336</td>
<td>0.073</td>
<td>0.118</td>
<td>[123]</td>
</tr>
<tr>
<td>Melperone</td>
<td>6</td>
<td>1484–2 898</td>
<td>0.5</td>
<td>24</td>
<td>0.14</td>
<td>0.28</td>
<td>[83]</td>
</tr>
<tr>
<td>Levomepromazine</td>
<td>8</td>
<td>913–4 737</td>
<td>0.9</td>
<td>24</td>
<td>8.63</td>
<td>12.85</td>
<td>[417]</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>14</td>
<td>1073–2 240</td>
<td>0.5</td>
<td>24</td>
<td>0.15</td>
<td>0.31</td>
<td>[589]</td>
</tr>
<tr>
<td>Paliperidone</td>
<td>14</td>
<td>3357–7 938</td>
<td>1.0</td>
<td>24</td>
<td>0.09</td>
<td>0.19</td>
<td>[390]</td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>11</td>
<td>1043–1 510</td>
<td>0.1</td>
<td>24</td>
<td>0.05</td>
<td>0.07</td>
<td>[738]</td>
</tr>
<tr>
<td>Chlorprothixene</td>
<td>3</td>
<td>918–1 448</td>
<td>0.2</td>
<td>24</td>
<td>0.10</td>
<td>0.15</td>
<td>[534]</td>
</tr>
<tr>
<td>Clozapine</td>
<td>16</td>
<td>258–728</td>
<td>0.5</td>
<td>24</td>
<td>0.40</td>
<td>0.80</td>
<td>[128, 176, 332]</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>3</td>
<td>440–490</td>
<td>0.6</td>
<td>24</td>
<td>0.78</td>
<td>0.87</td>
<td>[348]</td>
</tr>
<tr>
<td>Haloperidone decanoate</td>
<td></td>
<td>2380–3 940</td>
<td>1.0</td>
<td>24</td>
<td>0.18</td>
<td>0.29</td>
<td>[197]</td>
</tr>
<tr>
<td>CNS depressant drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>8</td>
<td>600–833</td>
<td>0.7</td>
<td>24</td>
<td>0.60</td>
<td>0.83</td>
<td>[18]</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>24</td>
<td>360–960</td>
<td>0.8</td>
<td>24</td>
<td>0.58</td>
<td>1.54</td>
<td>[607]</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>12</td>
<td>610–1733</td>
<td>0.5</td>
<td>24</td>
<td>0.20</td>
<td>0.57</td>
<td>[600]</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>24</td>
<td>1561–10 856</td>
<td>1.0</td>
<td>24</td>
<td>0.06</td>
<td>0.44</td>
<td>[213]</td>
</tr>
<tr>
<td>Sertraline</td>
<td>11</td>
<td>1313–2213 (m)</td>
<td>1.0</td>
<td>24</td>
<td>0.31</td>
<td>0.53</td>
<td>[565]</td>
</tr>
<tr>
<td>Tramadol</td>
<td>8</td>
<td>73–103</td>
<td>1.0</td>
<td>24</td>
<td>6.72</td>
<td>9.47</td>
<td>[473]</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>12</td>
<td>898–1 215</td>
<td>0.40</td>
<td>24</td>
<td>0.23</td>
<td>0.31</td>
<td>[165, 364]</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>18</td>
<td>747–1 540</td>
<td>1.0</td>
<td>24</td>
<td>0.45</td>
<td>0.93</td>
<td>[372]</td>
</tr>
<tr>
<td>O-Desmethylvenlafaxine</td>
<td></td>
<td>315–618</td>
<td>1.0</td>
<td>24</td>
<td>1.12</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>CNS stimulant drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melatonin</td>
<td>12</td>
<td>904–1 457</td>
<td>0.5</td>
<td>24</td>
<td>0.19</td>
<td>0.37</td>
<td>[698]</td>
</tr>
<tr>
<td>Pentoxyfylline</td>
<td>10</td>
<td>21–553</td>
<td>0.5</td>
<td>24</td>
<td>0.64</td>
<td>16.53</td>
<td>[581]</td>
</tr>
<tr>
<td>Pentoxifylline</td>
<td>12</td>
<td>1 009–3 212</td>
<td>0.4</td>
<td>24</td>
<td>0.20</td>
<td>0.41</td>
<td>[409]</td>
</tr>
<tr>
<td>CNS enhancer drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregabalin</td>
<td>12</td>
<td>133–600</td>
<td>1.0</td>
<td>24</td>
<td>1.16</td>
<td>5.22</td>
<td>[728]</td>
</tr>
<tr>
<td>Vortioxetine</td>
<td>14</td>
<td>467–10 267</td>
<td>1.0</td>
<td>24</td>
<td>0.07</td>
<td>1.49</td>
<td>[642]</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>12</td>
<td>303–397</td>
<td>0.5</td>
<td>24</td>
<td>1.05</td>
<td>1.36</td>
<td>[SPC]</td>
</tr>
</tbody>
</table>
dosing. The dose required to attain a steady-state concentration of a drug in plasma can be calculated if the dosing interval (τ), the clearance (Cl) and the bioavailability (F) for the drug in a particular patient are known. The calculation is based on the direct correlation of the drug dose D_e (constant dose per day at fixed doses). When factors (C/D low and C/D high) for calculation of dose-related plasma concentrations (C/D) are known, the concentration of the drug (Cl t) being the correlation coefficient:

\[C_{\text{low}} = \frac{D e \times F}{\tau} = \frac{C \times Cl_t} {\text{Cl t}} \]

Based on this information it is possible to calculate the dose-related plasma concentration of a drug that may be expected in blood specimens of patients under medication with a given dose [285]:

\[C = D e / Cl_t \]

For psychoactive medications, such data are available from studies in which drug concentrations were measured in plasma of healthy volunteers or patients treated with fixed doses. When the clearance is taken as arithmetic mean ± standard deviation from clinical trials of the drug, a dose related reference range can be calculated [285].

Definition

The “dose-related reference range” reported in the present guidelines is calculated as a concentration range within that a drug concentration is expected according to pharmacokinetic studies in human blood specimens from subjects under medication with a given dose of the drug. It contains 68% of all the drug concentrations determined under normal conditions in the blood of a “normal” patient or subject, “normal” being defined by the population in the respective clinical trial. It usually consists of individuals 18-65 years of age without relevant comorbidity, comedication, and genetic abnormalities in drug metabolism.

Table 4 lists factors for calculation of dose-related reference ranges for the most relevant psychoactive drugs. Dose-related reference ranges are calculated by multiplying C/D_{low} and C/D_{high}
by the daily dose. One must be aware, however, that many patients encountered in the clinical context do not fulfil all the abovementioned conditions.

Drug concentration in blood and brain

The pharmacological activity of a psychotropic drug depends on its availability in the target organ, the brain. However, the latter is separated from the blood by 2 barriers, which have to be crossed by the drug, the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier [154]. Most psychoactive drugs enter the brain due to their high lipid solubility by passive diffusion and thereby cross the barriers. The BBB is a physical barrier that separates circulating blood and the central nervous system, and it consists of endothelial cells around the capillaries joined together by tight junctions [154]. It efficiently restricts the exchange of solutes between the blood and the brain extracellular fluid. Functionally, it protects the brain against potentially harmful chemicals. As mentioned above, a number of psychoactive drugs, such as risperidone, aripiprazole or venlafaxine are substrates of P-gp [180, 370, 668]. As a consequence, brain to plasma concentration ratios vary widely for psychotropic drugs with similar physicochemical properties. Animal studies found ratios from 0.22 for risperidone [29] to 34 for fluphenazine [27]. In spite of highly variable ratios of brain to plasma concentrations of the different psychotropic drugs, animal studies have shown that steady-state plasma concentrations of psychoactive drugs correlate well with concentrations in brain, much better than doses. This has been shown for tricyclic antidepressants [249], trazodone [173], or olanzapine [28]. Drug concentrations in plasma can therefore be considered as a valid surrogate marker of concentrations in brain.

Drug concentration in blood and target structure occupancy in brain

Positron emission tomography (PET) enables analysis of central nervous receptor occupancy in vivo [207, 274, 275]. Antipsychotic drugs exert most of their therapeutic actions by blockade of dopamine D2-like receptors. Blockade of D2 receptors by antipsychotic drugs reduces the binding of radioactive PET ligands [207, 272, 275]. Using this approach and quantification of the displacement of dopamine receptor radioligands, it has been shown that plasma concentrations of antipsychotic drugs correlate well with receptor occupancy. In accordance with the high variability of drug concentrations in plasma under some doses it was found that receptor occupancy correlates better with plasma concentrations than with daily doses [313]. Optimal response was seen at 70–80% receptor occupancy, and 80% receptor occupancy was defined as the threshold for the occurrence of extrapyramidal side effects [207, 480]. PET was also used to characterize in vivo serotonin transporter occupancy by SSRIs [442, 443]. Using a serotonin transporter radioligand, plasma concentrations of citalopram, paroxetine, fluoxetine and sertraline were shown to correlate well with serotonin transporter occupancy. It was found that at least 80% occupancy should be attained for optimal clinical outcome [442, 443]. PET studies have thus brought about highly relevant information for the determination of optimal plasma concentrations of a considerable number of psychotropic drugs which is reviewed in this special issue by Gründer and co-workers [274].

“Therapeutic window” – therapeutic reference range

TDM is based on the assumption that there is a relationship between plasma concentrations and clinical effects (therapeutic improvement, side effects and adverse effects). It also assumes that there is a plasma concentration range of the drug which is characterized by maximal effectiveness and maximal safety, the so-called “therapeutic window”. Studies on relations between plasma concentration and clinical improvement have supported this concept since the sixties for lithium, tricyclic antidepressants and classical antipsychotic drugs. Systematic reviews and meta-analyses that were based on adequately designed studies led to convincing evidence of a significant relationship between clinical outcomes and plasma concentrations for nortriptyline, imipramine and desipramine which are associated with a high probability of response [51]. For amitriptyline as a model compound, a meta-analysis of 45 studies has shown that various statistical approaches provided almost identical results [672, 674]. For new antipsychotic drugs like aripiprazole [612], olanzapine [509] or risperidone [737] relationships between plasma concentration and clinical effectiveness have been reported. For the “therapeutic window” there are many synonymous terms like “therapeutic reference range”, “therapeutic range”, “optimal plasma concentration”, “effective plasma concentration”, “target range”, “target concentration”, or “orienting therapeutic range”, the term used in the first consensus [51]. The present consensus uses the term “therapeutic reference range” in accordance with the guidelines on TDM for antiepileptic drugs [499]. The “therapeutic reference range” was defined in this consensus guideline for neuropsychiatric drugs as follows:

Definition

The “therapeutic reference ranges” reported in this guideline (Table 5) define ranges of medication concentrations which specify a lower limit below which a drug induced therapeutic response is relatively unlikely to occur and an upper limit above which tolerability decreases or above which it is relatively unlikely that therapeutic improvement may be still enhanced. The therapeutic reference range is an orienting, population based range which may not necessarily be applicable to all patients. Individual patients may show optimal therapeutic response under a drug concentration that differs from the therapeutic reference range. Ultimately, psychopharmacotherapy can be best guided by identification of the patient’s “individual therapeutic concentration”.

The therapeutic reference ranges as recommended by the TDM group of the AGNP are given in Table 5. They were evidence-based and derived from the literature by the structured review process described above. For only 15 neuropsychiatric drugs therapeutic reference ranges based on randomized clinical trials were found in the literature. For most drugs, reference ranges were obtained from studies with therapeutically effective doses. Therefore, there is a need for further studies to define therapeutic ranges.

The reference ranges listed in Table 5 are generally those for the primary indication. A number of drugs, however, are recommended for several indications. For example, antidepressant drugs are also used for the treatment of anxiety states, and antipsychotic drugs are increasingly used to treat mania. Little information is available on optimum plasma concentrations in these situations. Exceptions are carbamazepine, lamotrigine and
<table>
<thead>
<tr>
<th>Drugs and active metabolites</th>
<th>Therapeutic reference range/recommended drug concentration</th>
<th>t1/2</th>
<th>Laboratory alert level</th>
<th>Level of recommendation to use TDM (consensus)</th>
<th>Conversion factor (CF, see below)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressant drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agomelatine</td>
<td>7–300 ng/mL (1–2 h after 50 mg)</td>
<td>1–2 h</td>
<td>600 ng/mL</td>
<td>4</td>
<td>4.11</td>
<td>[78]</td>
<td></td>
</tr>
<tr>
<td>Amitriptyline plus nortriptyline</td>
<td>80–200 ng/mL</td>
<td>10–28 h</td>
<td>300 ng/mL</td>
<td>1</td>
<td>3.41</td>
<td>[282, 502, 672]</td>
<td>Because of rapid elimination, trough drug concentrations are not measurable under chronic treatment. Determinations, preferentially of Cmax, should be restricted to specific indications.</td>
</tr>
<tr>
<td>Bupropion plus hydroxybupropion</td>
<td>225–1 500 ng/mL</td>
<td>17–47 h</td>
<td>2 000 ng/mL</td>
<td>3</td>
<td>4.17</td>
<td>[151, 152, 336, 529, 636]</td>
<td>Bupropion, and to a lesser degree its metabolite, are unstable, plasma or serum must be stored frozen (−20°C)</td>
</tr>
<tr>
<td>Citalopram</td>
<td>50–110 ng/mL</td>
<td>33 h</td>
<td>220 ng/mL</td>
<td>2</td>
<td>3.08</td>
<td>[42, 73, 111, 339, 388, 442, 471, 491, 549, 598]</td>
<td>NDemethylated metabolites do not contribute to pharmacological actions</td>
</tr>
<tr>
<td>Clomipramine plus nortclo- mipramine</td>
<td>230–450 ng/mL</td>
<td>16–60 h</td>
<td>450 ng/mL</td>
<td>1</td>
<td>3.18</td>
<td>[239]</td>
<td></td>
</tr>
<tr>
<td>Desipramine</td>
<td>100–300 ng/mL</td>
<td>15–18 h</td>
<td>300 ng/mL</td>
<td>2</td>
<td>3.75</td>
<td>[902]</td>
<td>Delayed elimination in PIM of CYP2D6</td>
</tr>
<tr>
<td>Desvenlafaxine</td>
<td>100–400 ng/mL</td>
<td>11 h</td>
<td>600 ng/mL</td>
<td>2</td>
<td>3.80</td>
<td>[620]</td>
<td></td>
</tr>
<tr>
<td>Doseulepin+ Dothiepin</td>
<td>45–100 ng/mL</td>
<td>18–21 h</td>
<td>200 ng/mL</td>
<td>2</td>
<td>3.39</td>
<td>[102, 325, 414, 541]</td>
<td></td>
</tr>
<tr>
<td>Dexeipin plus nordexepin</td>
<td>50–150 ng/mL</td>
<td>15–20 h</td>
<td>300 ng/mL</td>
<td>2</td>
<td>3.58</td>
<td>[172, 321, 393, 445]</td>
<td></td>
</tr>
<tr>
<td>Duloxetine</td>
<td>30–120 ng/mL</td>
<td>9–19 h</td>
<td>240 ng/mL</td>
<td>2</td>
<td>3.36</td>
<td>[21, 640, 703]</td>
<td>No active metabolites</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>15–80 ng/mL</td>
<td>30 h</td>
<td>160 ng/mL</td>
<td>2</td>
<td>3.08</td>
<td>[409, 679]</td>
<td>NoDemethylated metabolites do not contribute to pharmacological actions</td>
</tr>
<tr>
<td>Fluoxetine plus norflonoxetine</td>
<td>120–500 ng/mL</td>
<td>4–6 days</td>
<td>1000 ng/mL</td>
<td>2</td>
<td>3.23</td>
<td>[84, 187, 410, 442, 545]</td>
<td>Long elimination half life of norfloxetine (mean 14 days) and long-lasting potent inhibition of CYP2D6</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>60–230 ng/mL</td>
<td>20 h</td>
<td>500 ng/mL</td>
<td>2</td>
<td>3.14</td>
<td>[353, 587, 631, 634, 639]</td>
<td>Inhibition of CYP1A2, CYP2C19</td>
</tr>
<tr>
<td>Imipramine plus desipramine</td>
<td>175–300 ng/mL</td>
<td>11–25 h</td>
<td>300 ng/mL</td>
<td>1</td>
<td>3.57</td>
<td>[72, 229, 245, 510, 538]</td>
<td>Hydroxylated metabolites</td>
</tr>
<tr>
<td>Maprotiline</td>
<td>75–130 ng/mL</td>
<td>20–58 h</td>
<td>220 ng/mL</td>
<td>2</td>
<td>3.60</td>
<td>[231, 321, 384]</td>
<td>Active metabolite N-demethylmaprotiline</td>
</tr>
<tr>
<td>Mianserin</td>
<td>15–70 ng/mL</td>
<td>14–33 h</td>
<td>140 ng/mL</td>
<td>3</td>
<td>3.78</td>
<td>[191, 192, 453]</td>
<td></td>
</tr>
<tr>
<td>Milnacipran</td>
<td>50–110 ng/mL</td>
<td>5–8 h</td>
<td>220 ng/mL</td>
<td>2</td>
<td>2.24</td>
<td>[206, 315]</td>
<td></td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>30–80 ng/mL</td>
<td>20–40 h</td>
<td>160 ng/mL</td>
<td>2</td>
<td>3.77</td>
<td>[257, 367, 397, 440, 552, 591]</td>
<td>NDemethylated metabolite does not contribute to pharmacological actions</td>
</tr>
<tr>
<td>Moclobemide</td>
<td>300–1000 ng/mL</td>
<td>2–7 h</td>
<td>2000 ng/mL</td>
<td>3</td>
<td>3.72</td>
<td>[225, 291, 327]</td>
<td>Metabolites are pharmacologically inactive</td>
</tr>
<tr>
<td>Nortriptyline</td>
<td>70–170 ng/mL</td>
<td>30 h</td>
<td>300 ng/mL</td>
<td>1</td>
<td>3.80</td>
<td>[30, 31, 504, 506, 510]</td>
<td>Hydroxylated metabolites</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>30–120 ng/mL</td>
<td>12–44 h</td>
<td>240 ng/mL</td>
<td>3</td>
<td>3.04</td>
<td>[242, 243, 410, 440]</td>
<td></td>
</tr>
<tr>
<td>Reboxetine</td>
<td>60–350 ng/mL</td>
<td>13–30 h</td>
<td>700 ng/mL</td>
<td>3</td>
<td>3.19</td>
<td>[483, 484]</td>
<td></td>
</tr>
<tr>
<td>Sertraline</td>
<td>10–150 ng/mL</td>
<td>26 h</td>
<td>300 ng/mL</td>
<td>2</td>
<td>3.27</td>
<td>[15, 49, 258, 281, 410, 443, 545, 696]</td>
<td>NDemethylated metabolite has a 2-fold longer elimination half life than sertraline, but only 1/20 of the activity of sertraline</td>
</tr>
<tr>
<td>Tranilcipromin</td>
<td>≤50 ng/mL</td>
<td>1–3 h</td>
<td>100 ng/mL</td>
<td>4</td>
<td>7.51</td>
<td>[103, 329]</td>
<td>Due to irreversible inhibition of monoamine oxidase, plasma concentrations do not correlate with drug actions</td>
</tr>
<tr>
<td>Trandine</td>
<td>700–1000 ng/mL</td>
<td>4–11 h</td>
<td>1200 ng/mL</td>
<td>2</td>
<td>2.69</td>
<td>[250, 262, 268, 447, 590]</td>
<td></td>
</tr>
<tr>
<td>Trimipramide</td>
<td>150–300 ng/mL</td>
<td>23 h</td>
<td>600 ng/mL</td>
<td>2</td>
<td>3.40</td>
<td>[142, 187, 223, 326]</td>
<td>Active metabolite N-demethyltrimipramine</td>
</tr>
<tr>
<td>Venlafaxine plus O-desmethylvenlafaxine</td>
<td>100–400 ng/mL</td>
<td>5 h</td>
<td>800 ng/mL</td>
<td>2</td>
<td>3.61</td>
<td>[85, 241, 316, 443, 545, 550, 592, 684, 696]</td>
<td>In most patients O-desmethylvenlafaxine is the active principle in vivo, N-demethylated venlafaxine does not contribute to pharmacological actions. At low concentrations, the drug acts predominantly as an SSRI</td>
</tr>
</tbody>
</table>

Plasma concentrations given in mass units can be converted to molar units by multiplication with the conversion factor (CF) nmol/L = ng/mL x CF

Review 205

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Table 5

<table>
<thead>
<tr>
<th>Drugs and active metabolites</th>
<th>Therapeutic reference range/recommended drug concentration</th>
<th>t1/2</th>
<th>Laboratory alert level</th>
<th>Level of recommendation to use TDM (consensus)</th>
<th>Conversion factor (CF, see below)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antipsychotic drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amisulpride</td>
<td>100–320 ng/mL</td>
<td>12–20 h</td>
<td>640 ng/mL</td>
<td>1</td>
<td>2.71</td>
<td>[64, 89, 441, 461, 531, 613, 690]</td>
<td>No metabolites</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>150–500 ng/mL</td>
<td>60–80 h</td>
<td>1 000 ng/mL</td>
<td>2</td>
<td>2.23</td>
<td>[33, 273, 306, 368, 452, 612]</td>
<td>The metabolite dehydroaripiprazole is active in vitro, it remains unclear to which extent it contributes to clinical effects</td>
</tr>
<tr>
<td>Asenapine</td>
<td>2–5 ng/mL</td>
<td>24 h</td>
<td>10 ng/mL</td>
<td>4</td>
<td>3.50</td>
<td>[707]</td>
<td></td>
</tr>
<tr>
<td>Benperidol</td>
<td>1–10 ng/mL</td>
<td>5 h</td>
<td>20 ng/mL</td>
<td>3</td>
<td>2.62</td>
<td>[472, 589]</td>
<td>Higher levels may be tolerated in patients under long-term high-dose therapy due to adaptive changes.</td>
</tr>
<tr>
<td>Bromperidol</td>
<td>12–15 ng/mL</td>
<td>20–36 h</td>
<td>30 ng/mL</td>
<td>2</td>
<td>4.38</td>
<td>[609, 656, 735]</td>
<td></td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>30–300 ng/mL</td>
<td>15–30 h</td>
<td>600 ng/mL</td>
<td>2</td>
<td>3.14</td>
<td>[127, 559]</td>
<td></td>
</tr>
<tr>
<td>Chlorprothixide</td>
<td>20–300 ng/mL</td>
<td>8–12 h</td>
<td>400 ng/mL</td>
<td>3</td>
<td>3.17</td>
<td>[542]</td>
<td></td>
</tr>
<tr>
<td>Clozapine</td>
<td>350–600 ng/mL</td>
<td>12–16 h</td>
<td>1 000 ng/mL</td>
<td>1</td>
<td>3.06</td>
<td>[175, 507, 493, 507, 678]</td>
<td>Major metabolite N-desmethylclozapine with unclear antipsychotic activity</td>
</tr>
<tr>
<td>Flupenthixol</td>
<td>1–10 ng/mL</td>
<td>20–40 h</td>
<td>15 ng/mL</td>
<td>2</td>
<td>3.00</td>
<td>[40, 543, 564]</td>
<td></td>
</tr>
<tr>
<td>Fluphenazine</td>
<td>1–10 ng/mL</td>
<td>16 h</td>
<td>15 ng/mL</td>
<td>1</td>
<td>2.29</td>
<td>[564, 680]</td>
<td></td>
</tr>
<tr>
<td>Flupirilen</td>
<td>0.1–2.2 ng/mL</td>
<td>7–14 days</td>
<td>4.4 ng/mL</td>
<td>2</td>
<td>2.10</td>
<td>[611]</td>
<td></td>
</tr>
<tr>
<td>Haloperidol</td>
<td>1–10 ng/mL</td>
<td>12–36 h</td>
<td>15 ng/mL</td>
<td>1</td>
<td>2.66</td>
<td>[74, 214, 480, 494, 508, 674, 680]</td>
<td>Higher levels can be tolerated in patients under long-term high-dose therapy due to adaptive changes.</td>
</tr>
<tr>
<td>Iloperidone</td>
<td>5–10 ng/mL</td>
<td>18–33 h</td>
<td>20 ng/mL</td>
<td>3</td>
<td>2.34</td>
<td>[476, 576]</td>
<td></td>
</tr>
<tr>
<td>Levomepromazine</td>
<td>30–160 ng/mL</td>
<td>16–78 h</td>
<td>320 ng/mL</td>
<td>3</td>
<td>3.04</td>
<td>[656]</td>
<td></td>
</tr>
<tr>
<td>Melperone</td>
<td>30–100 ng/mL</td>
<td>4–6 h</td>
<td>200 ng/mL</td>
<td>3</td>
<td>3.80</td>
<td>[83, 324]</td>
<td>Inhibitor of CYP2D6</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>20–80 ng/mL</td>
<td>30–60 h</td>
<td>150 ng/mL</td>
<td>1</td>
<td>3.20</td>
<td>[32, 56, 63, 132, 208, 240, 418, 478, 509, 602, 711]</td>
<td>Under olanzapine pamoate, patients exhibited a post injection syndrome when drug concentrations exceeded 150 ng/mL</td>
</tr>
<tr>
<td>Paliperidone</td>
<td>20–60 ng/mL</td>
<td>23 h</td>
<td>120 ng/mL</td>
<td>2</td>
<td>2.35</td>
<td>[26, 70, 131, 466]</td>
<td>Paliperidone = 9-hydroxyrisperidone</td>
</tr>
<tr>
<td>Perazine</td>
<td>100–230 ng/mL</td>
<td>8–16 h</td>
<td>460 ng/mL</td>
<td>1</td>
<td>2.95</td>
<td>[91]</td>
<td></td>
</tr>
<tr>
<td>Perphenazine</td>
<td>0.6–2.4 ng/mL</td>
<td>8–12 h</td>
<td>5 ng/mL</td>
<td>1</td>
<td>2.48</td>
<td>[564, 637, 680]</td>
<td></td>
</tr>
<tr>
<td>Pimozide</td>
<td>15–20 ng/mL</td>
<td>23–43 h</td>
<td>20 ng/mL</td>
<td>3</td>
<td>2.17</td>
<td>[649]</td>
<td></td>
</tr>
<tr>
<td>Pipamperone</td>
<td>100–400 ng/mL</td>
<td>17–22 h</td>
<td>500 ng/mL</td>
<td>3</td>
<td>2.66</td>
<td>[82, 317]</td>
<td></td>
</tr>
<tr>
<td>Prisopipendyl</td>
<td>5–10 ng/mL</td>
<td>2–3 h</td>
<td>20 ng/mL</td>
<td>4</td>
<td>3.35</td>
<td>[436]</td>
<td>[5PC]</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>100–500 ng/mL</td>
<td>7 h</td>
<td>1 000 ng/mL</td>
<td>2</td>
<td>2.61</td>
<td>[112, 212, 236, 299, 498, 603, 627, 689, 723]</td>
<td>When the patient has taken the extended release (XR) formulation in the evening and blood was withdrawn in the morning, expected plasma concentrations are 2-fold higher than trough levels</td>
</tr>
<tr>
<td>Risperidone</td>
<td>20–60 ng/mL</td>
<td>3 h</td>
<td>120 ng/mL</td>
<td>2</td>
<td>2.44</td>
<td>[150, 406, 426, 437, 469, 473, 553, 557, 617, 729, 733]</td>
<td>Active metabolite dehydroseridone (concentration at therapeutic doses 40–60 ng/mL), concentration dependent increase of QT interval by blockade of potassium channels</td>
</tr>
<tr>
<td>plus 9-hydroxyrisperidone</td>
<td>20–60 ng/mL</td>
<td>24 h</td>
<td>120 ng/mL</td>
<td>2</td>
<td>2.35</td>
<td>[150, 406, 426, 437, 469, 473, 553, 557, 617, 729, 733]</td>
<td></td>
</tr>
<tr>
<td>Sertindole</td>
<td>50–100 ng/mL</td>
<td>55–90 h</td>
<td>200 ng/mL</td>
<td>2</td>
<td>2.27</td>
<td>[71, 199, 110, 653, 728, 729]</td>
<td></td>
</tr>
<tr>
<td>Sulpiride</td>
<td>200–1000 ng/mL</td>
<td>8–14 h</td>
<td>1 000 ng/mL</td>
<td>2</td>
<td>2.93</td>
<td>[460, 656]</td>
<td>No metabolites, renal elimination</td>
</tr>
<tr>
<td>Thioridazine</td>
<td>100–200 ng/mL</td>
<td>30 h</td>
<td>400 ng/mL</td>
<td>1</td>
<td>2.70</td>
<td>[190, 656]</td>
<td>Contraindicated in poor metabolizers of CYP2D6</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>50–200 ng/mL</td>
<td>6 h</td>
<td>400 ng/mL</td>
<td>2</td>
<td>2.55</td>
<td>[126, 419, 427, 688, 695]</td>
<td>The drug should be taken with a meal, otherwise absorption is reduced and plasma concentrations will be lower than expected</td>
</tr>
<tr>
<td>Zotepine</td>
<td>10–150 ng/mL</td>
<td>13–16 h</td>
<td>300 ng/mL</td>
<td>3</td>
<td>3.01</td>
<td>[376, 642]</td>
<td></td>
</tr>
<tr>
<td>Zuclopenthixol</td>
<td>4–50 ng/mL</td>
<td>15–25 h</td>
<td>100 ng/mL</td>
<td>3</td>
<td>2.49</td>
<td>[330, 371, 692]</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Continued.

<table>
<thead>
<tr>
<th>Drugs and active metabolites</th>
<th>Therapeutic reference range/recommended drug concentration</th>
<th>t1/2</th>
<th>Laboratory alert level</th>
<th>Level of recommendation to use TDM (consensus)</th>
<th>Conversion factor (CF, see below)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood stabilizing drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>4–10 µg/mL</td>
<td>10–20 h</td>
<td>20 µg/mL</td>
<td>2</td>
<td>4.23</td>
<td>[512]</td>
<td>Active 10,11-epoxide metabolite contributes to clinical effects</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>3–14 µg/mL</td>
<td>7–23 h</td>
<td>30 µg/mL</td>
<td>2</td>
<td>3.90</td>
<td>[455, 558]</td>
<td>So far no specific reference range for mood stabilizing effect, valproate increases elimination half life to 48–70 h</td>
</tr>
<tr>
<td>Lithium</td>
<td>0.5–1.2 mmol/l (4–8 µg/mL)</td>
<td>24 h</td>
<td>1.2 mmol/l (8 µg/mL)</td>
<td>1</td>
<td>125.8</td>
<td>[593, 721]</td>
<td>Age dependent increase of elimination half life</td>
</tr>
<tr>
<td>Valproic acid</td>
<td>50–100 µg/mL</td>
<td>18 h</td>
<td>120 µg/mL</td>
<td>2</td>
<td>6.93</td>
<td>[16, 216, 301, 683]</td>
<td>In individual cases 120 µg/mL are also tolerated in acute mania.</td>
</tr>
<tr>
<td>Anticonvulsant drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>4–12 µg/mL</td>
<td>10–20 h</td>
<td>20 µg/mL</td>
<td>2</td>
<td>4.25</td>
<td>[87, 338, 499]</td>
<td>Active 10,11-epoxide metabolite contributes to clinical effects</td>
</tr>
<tr>
<td>Clobazam and N-desmethylclobazam</td>
<td>30–300 ng/mL</td>
<td>18–42 h</td>
<td>500 ng/mL</td>
<td>2</td>
<td>3.33</td>
<td>[278, 499]</td>
<td>Active N-demethylated metabolite contributes to clinical effects</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>20–70 µg/mL</td>
<td>40 h</td>
<td>80 ng/mL</td>
<td>2</td>
<td>3.17</td>
<td>[44, 464, 499]</td>
<td>7-Amino metabolite retains some activity</td>
</tr>
<tr>
<td>Ethosuximide</td>
<td>40–100 µg/mL</td>
<td>33–55 h</td>
<td>120 µg/mL</td>
<td>2</td>
<td>7.08</td>
<td>[88, 499]</td>
<td></td>
</tr>
<tr>
<td>Felbamate</td>
<td>30–60 µg/mL</td>
<td>15–23 h</td>
<td>100 µg/mL</td>
<td>2</td>
<td>4.20</td>
<td>[290, 343, 499]</td>
<td></td>
</tr>
<tr>
<td>Gabapentin</td>
<td>2–20 µg/mL</td>
<td>6 h</td>
<td>25 µg/mL</td>
<td>3</td>
<td>5.84</td>
<td>[75–77, 343, 398, 499]</td>
<td></td>
</tr>
<tr>
<td>Lacosamide</td>
<td>1–10 µg/mL</td>
<td>13 h</td>
<td>20 µg/mL</td>
<td></td>
<td>2.66</td>
<td>[47]</td>
<td></td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>3–14 µg/mL</td>
<td>7–23 h</td>
<td>20 µg/mL</td>
<td>2</td>
<td>3.90</td>
<td>[88, 343, 455, 499, 610]</td>
<td>Valproate increases elimination half life to 48–70 h</td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>10–40 µg/mL</td>
<td>6–8 h</td>
<td>100 µg/mL (morning levels)</td>
<td>2</td>
<td>3.87</td>
<td>[88, 343, 430, 499]</td>
<td></td>
</tr>
<tr>
<td>Valproic acid</td>
<td>50–100 µg/mL</td>
<td>60 h</td>
<td>40 µg/mL</td>
<td>2</td>
<td>4.86</td>
<td>[88, 499]</td>
<td></td>
</tr>
<tr>
<td>Anxiolytic/hypnotic drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alprazolam</td>
<td>5–30 µg/mL</td>
<td>7 h</td>
<td>40 µg/mL</td>
<td>2</td>
<td>4.20</td>
<td>[511]</td>
<td></td>
</tr>
<tr>
<td>Brotizolam</td>
<td>1–10 µg/mL</td>
<td>4–13 h</td>
<td>15 µg/mL</td>
<td>2</td>
<td>4.27</td>
<td>[503]</td>
<td></td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>2–8 µg/mL</td>
<td>3–30 h</td>
<td>12 µg/mL</td>
<td>2</td>
<td>3.46</td>
<td>[88, 375, 499]</td>
<td></td>
</tr>
<tr>
<td>Ethinodiazepine</td>
<td>20–200 ng/mL</td>
<td>7–9 h</td>
<td>300 ng/mL</td>
<td>2</td>
<td>2.66</td>
<td>[88, 235, 343, 499]</td>
<td></td>
</tr>
<tr>
<td>Verteporfin</td>
<td>2–8 µg/mL</td>
<td>21 h</td>
<td>16 µg/mL</td>
<td>3</td>
<td>2.95</td>
<td>[88, 226, 343, 431, 499]</td>
<td></td>
</tr>
<tr>
<td>Valproic acid</td>
<td>50–100 µg/mL</td>
<td>18 h</td>
<td>120 µg/mL</td>
<td>2</td>
<td>6.93</td>
<td>[16, 88, 216, 301, 499, 682, 683]</td>
<td></td>
</tr>
<tr>
<td>Zonisamide</td>
<td>10–40 µg/mL</td>
<td>60 h</td>
<td>40 µg/mL</td>
<td>2</td>
<td>4.71</td>
<td>[247, 448, 499]</td>
<td></td>
</tr>
<tr>
<td>Antidepressants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemie C et al. ACP Consensus Guidelines 2011; 14: 195–225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5

<table>
<thead>
<tr>
<th>Drugs and active metabolites</th>
<th>Therapeutic reference range/recommended drug concentration</th>
<th>$t_{1/2}$</th>
<th>Laboratory alert level</th>
<th>Level of recommendation to use TDM (consensus)</th>
<th>Conversion factor (CF, see below)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordiazepoxide</td>
<td>400–3000 ng/mL</td>
<td>5–30 h</td>
<td>3 500 ng/mL</td>
<td>4</td>
<td>3.48</td>
<td>[408, 586]</td>
<td></td>
</tr>
<tr>
<td>Clonazepam</td>
<td>6–80 ng/mL</td>
<td>19–30 h</td>
<td>100 ng/mL</td>
<td>4</td>
<td>3.17</td>
<td>[181, 462, 586]</td>
<td></td>
</tr>
<tr>
<td>Diazepam and metabolites</td>
<td>200–2500 ng/mL</td>
<td>24–48 h</td>
<td>3000 ng/mL</td>
<td>4</td>
<td>3.51</td>
<td>[224, 261, 264, 586]</td>
<td></td>
</tr>
<tr>
<td>Flunitrazepam</td>
<td>5–15 ng/mL</td>
<td>10–30 h</td>
<td>50 ng/mL</td>
<td>4</td>
<td>3.20</td>
<td>[80, 425]</td>
<td></td>
</tr>
<tr>
<td>Lorazepam</td>
<td>10–15 ng/mL</td>
<td>12–16 h</td>
<td>30 ng/mL</td>
<td>4</td>
<td>3.20</td>
<td>[164, 196, 218, 267]</td>
<td></td>
</tr>
<tr>
<td>Lorazepam plus nordazepam</td>
<td>2–10 ng/mL</td>
<td>8–14 h</td>
<td>100 ng/mL</td>
<td>4</td>
<td>2.98</td>
<td>[3, 515]</td>
<td></td>
</tr>
<tr>
<td>Midaolam</td>
<td>6–15 ng/mL</td>
<td>1–3 h</td>
<td>1000 ng/mL</td>
<td>4</td>
<td>3.06</td>
<td>[35, 261, 323]</td>
<td></td>
</tr>
<tr>
<td>Nitrazepam</td>
<td>30–100 ng/mL</td>
<td>18–30 h</td>
<td>200 ng/mL</td>
<td>4</td>
<td>3.56</td>
<td>[467, 586]</td>
<td></td>
</tr>
<tr>
<td>Nordazepam</td>
<td>20–800 ng/mL</td>
<td>50–90 h</td>
<td>1500 ng/mL</td>
<td>4</td>
<td>3.69</td>
<td>[586]</td>
<td></td>
</tr>
<tr>
<td>Opipramol</td>
<td>50–500 ng/mL</td>
<td>11 h</td>
<td>1000 ng/mL</td>
<td>3</td>
<td>2.87</td>
<td>[386]</td>
<td></td>
</tr>
<tr>
<td>Oxazepam</td>
<td>200–1500 ng/mL</td>
<td>4–15 h</td>
<td>2000 ng/mL</td>
<td>4</td>
<td>3.49</td>
<td>[586]</td>
<td></td>
</tr>
<tr>
<td>Pregabalin</td>
<td>2–5 µg/mL</td>
<td>6 h</td>
<td>10 µg/mL</td>
<td>3</td>
<td>6.28</td>
<td>[76, 77]</td>
<td></td>
</tr>
<tr>
<td>Temazepam</td>
<td>20–900 ng/mL</td>
<td>5–13 h</td>
<td>1000 ng/mL</td>
<td>4</td>
<td>3.51</td>
<td>[586]</td>
<td></td>
</tr>
<tr>
<td>Triazolam</td>
<td>2–20 ng/mL</td>
<td>1–5 h</td>
<td>40 ng/mL</td>
<td>3</td>
<td>4.12</td>
<td>[586]</td>
<td></td>
</tr>
<tr>
<td>Zopiclone</td>
<td>10–50 ng/mL</td>
<td>5 h</td>
<td>150 ng/mL</td>
<td>4</td>
<td>3.48</td>
<td>[586]</td>
<td></td>
</tr>
</tbody>
</table>

Antidementia Drugs

<table>
<thead>
<tr>
<th>Drugs and active metabolites</th>
<th>Therapeutic reference range/recommended drug concentration</th>
<th>$t_{1/2}$</th>
<th>Laboratory alert level</th>
<th>Level of recommendation to use TDM (consensus)</th>
<th>Conversion factor (CF, see below)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donepezil</td>
<td>30–75 ng/mL</td>
<td>70–80 h</td>
<td>75 ng/mL</td>
<td>2</td>
<td>2.64</td>
<td>[492, 563, 652]</td>
<td></td>
</tr>
<tr>
<td>Galantamine</td>
<td>30–60 ng/mL</td>
<td>8 h</td>
<td>90 ng/mL</td>
<td>3</td>
<td>3.48</td>
<td>[322, 333, 734]</td>
<td></td>
</tr>
<tr>
<td>Memantine</td>
<td>90–150 ng/mL</td>
<td>60–100 h</td>
<td>300 ng/mL</td>
<td>3</td>
<td>5.58</td>
<td>[251, 378]</td>
<td></td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>Oral 8–20 mg/L (1–2 h after dose) Patch</td>
<td>1–2 h</td>
<td>40 ng/mL</td>
<td>3</td>
<td>4.00</td>
<td>[991, 147, 391]</td>
<td></td>
</tr>
</tbody>
</table>

Drugs for treatment of substance related disorders

<table>
<thead>
<tr>
<th>Drugs and active metabolites</th>
<th>Therapeutic reference range/recommended drug concentration</th>
<th>$t_{1/2}$</th>
<th>Laboratory alert level</th>
<th>Level of recommendation to use TDM (consensus)</th>
<th>Conversion factor (CF, see below)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acamprosate</td>
<td>250–700 ng/mL</td>
<td>13 h</td>
<td>1000 ng/mL</td>
<td>3</td>
<td>8.68</td>
<td>[287, 288, 424]</td>
<td></td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>0.7–1.6 mg/mL (Cmax: < 9 ng/mL after 24 mg)</td>
<td>2–5 h</td>
<td>10 ng/mL (Cmax)</td>
<td>2</td>
<td>2.38</td>
<td>[120, 130, 383]</td>
<td></td>
</tr>
<tr>
<td>Bupropion plus Hydroxybutyropion</td>
<td>550–1500 ng/mL</td>
<td>20 h</td>
<td>2000 ng/mL</td>
<td>2</td>
<td>4.17</td>
<td>[345]</td>
<td></td>
</tr>
<tr>
<td>Clomethiazol</td>
<td>100–5000 ng/mL</td>
<td>2–5 h</td>
<td>500 ng/mL</td>
<td>3</td>
<td>3.37</td>
<td>[203, 344, 586]</td>
<td></td>
</tr>
<tr>
<td>Disulfiram</td>
<td>50–400 ng/mL</td>
<td>7 h</td>
<td>500 ng/mL</td>
<td>3</td>
<td>3.37</td>
<td>[146]</td>
<td></td>
</tr>
<tr>
<td>Levomethadone</td>
<td>250–400 ng/mL</td>
<td>14–55 h</td>
<td>400 ng/mL</td>
<td>2</td>
<td>3.23</td>
<td>[146]</td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>400–600 ng/mL</td>
<td>24–48 h</td>
<td>600 ng/mL</td>
<td>2</td>
<td>3.23</td>
<td>[146, 188, 595]</td>
<td></td>
</tr>
</tbody>
</table>

Active metabolites are nordazepam, oxazepam and temazepam.

Antidementia Drugs

Bupropion is unstable, plasma or serum must be stored frozen (−20°C) after blood withdrawal. In a clinical trial 300 mg was the most effective dose with resulting plasma concentrations as indicated.

Clomethiazol

In alcohol dependent patients much higher plasma concentrations may be tolerated than in healthy subjects.

Disulfiram

Disulfiram (DSF) is a prodrug, its active metabolite diethylthiocarbamyl (DDTCMe) has been suggested as a possible marker for proper dose titration of disulfiram [344]. In a pharmacokinetic study under 300 DSF mean ± SD steady state concentrations of DSF amounted to 170 ± 10 ng/mL those of DDTC-Me to 290 ± 20 ng/mL.

In non users of opiates, effective or toxic plasma concentrations are markedly lower than in users. Chronic users may even need “toxic” concentrations in blood to avoid the occurrence of withdrawal symptoms.
Table 5 Continued.

<table>
<thead>
<tr>
<th>Drugs and active metabolites</th>
<th>Therapeutic reference range/recommended drug concentration</th>
<th>t1/2</th>
<th>Laboratory alert level</th>
<th>Level of recommendation to use TDM (consensus)</th>
<th>Conversion factor (CF, see below)</th>
<th>Reference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antipsychotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naltrexone plus 6β-naltrexol</td>
<td>25–100 ng/mL</td>
<td>4 h</td>
<td>1200 ng/mL</td>
<td>2</td>
<td>3.06</td>
<td>[99, 211, 252, 424]</td>
<td></td>
</tr>
<tr>
<td>Varenicline</td>
<td>4–5 ng/mL</td>
<td>24 h</td>
<td>10 ng/mL</td>
<td>3</td>
<td>4.73</td>
<td>[202, 532]</td>
<td></td>
</tr>
<tr>
<td>Antiparkinson drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amantadine</td>
<td>0.3–0.6 μg/mL</td>
<td>10–14h</td>
<td>1.2 μg/mL</td>
<td>3</td>
<td>5.98</td>
<td>[120]</td>
<td></td>
</tr>
<tr>
<td>Biperiden</td>
<td>Cmax. 1–6.5 ng/mL</td>
<td>18–24 h</td>
<td>13 ng/mL</td>
<td>3</td>
<td>3.21</td>
<td>[270]</td>
<td></td>
</tr>
<tr>
<td>Bornaprine</td>
<td>Cmax. 0.7–7.2 ng/mL</td>
<td>30 h</td>
<td>14 ng/mL</td>
<td>3</td>
<td>3.04</td>
<td>[433]</td>
<td></td>
</tr>
<tr>
<td>Bromocriptine</td>
<td>Low dose (2.5mg): 0.1–0.3 ng/mL; Max. dose (25 mg): 1.0–4.0 ng/mL</td>
<td>38 h</td>
<td>8 ng/mL</td>
<td>3</td>
<td>1.53</td>
<td>[168]</td>
<td></td>
</tr>
<tr>
<td>Cabergoline</td>
<td>Cmax. 58–144 pg/mL</td>
<td>63–68 h</td>
<td>390 pg/mL</td>
<td>3</td>
<td>2.21</td>
<td>[168]</td>
<td></td>
</tr>
<tr>
<td>Carbidopa</td>
<td>Cmax. 20–200 ng/mL</td>
<td>2 h</td>
<td>400 ng/mL</td>
<td>3</td>
<td>4.42</td>
<td>[574]</td>
<td></td>
</tr>
<tr>
<td>Levodopa</td>
<td>Cmax. 0.3–2.0 μg/mL</td>
<td>1–3 h</td>
<td>5 μg/mL</td>
<td>3</td>
<td>5.07</td>
<td>[4, 135, 394, 479, 574]</td>
<td></td>
</tr>
<tr>
<td>O‑Methyldopa</td>
<td>Cmax. 0.6–0.9 h after 250 mg combined with 25 mg carbidopa</td>
<td>1–3 h</td>
<td>7 μg/mL</td>
<td>3</td>
<td>5.07</td>
<td>[4, 135, 394, 479, 574]</td>
<td></td>
</tr>
<tr>
<td>Entacapone</td>
<td>Cmax. 0.4–1.0 μg/mL</td>
<td>0.5 h</td>
<td>2 μg/mL</td>
<td>3</td>
<td>3.28</td>
<td>[304, 570]</td>
<td></td>
</tr>
<tr>
<td>Pramipexole</td>
<td>0.39–7.17 ng/mL</td>
<td>8–12 h</td>
<td>15 ng/mL</td>
<td>3</td>
<td>4.73</td>
<td>[730]</td>
<td></td>
</tr>
<tr>
<td>Ropinirole</td>
<td>0.4–6.0 ng/mL</td>
<td>3–10 h</td>
<td>12 ng/mL</td>
<td>3</td>
<td>3.84</td>
<td>[657]</td>
<td></td>
</tr>
<tr>
<td>Tolcapone</td>
<td>Cmax. 1–2 μg/mL</td>
<td>3–4 h</td>
<td>4 μg/mL</td>
<td>3</td>
<td>3.05</td>
<td>[108]</td>
<td></td>
</tr>
<tr>
<td>Other Drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>200–1 000 ng/mL</td>
<td>4 h</td>
<td>2 000 ng/mL</td>
<td>3</td>
<td>3.91</td>
<td>[233, 302, 446, 583]</td>
<td></td>
</tr>
<tr>
<td>Dexamfetamine</td>
<td>13–23 ng/mL</td>
<td>2</td>
<td>44</td>
<td>2</td>
<td>4.29</td>
<td>[663]</td>
<td></td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>13–22 ng/mL</td>
<td>2 h</td>
<td>44 ng/mL</td>
<td>2</td>
<td>4.29</td>
<td>[331, 422, 614, 615]</td>
<td></td>
</tr>
<tr>
<td>Modafinil</td>
<td>1 000–1 700 ng/mL</td>
<td>10–12 h</td>
<td>3 400 ng/mL</td>
<td>3</td>
<td>4.21</td>
<td>[733]</td>
<td></td>
</tr>
</tbody>
</table>

Plasma concentrations given in mass units can be converted to molar units by multiplication with the conversion factor (CF) nmol/L = ng/mL x CF

*Active metabolite contributes to wanted and unwanted effects. Indicated reference ranges and laboratory alert levels refer to the mother compound only.

For bupropion, carbamazepine, lamotrigine and valproic acid recommended reference ranges were listed twice in accordance with the 2 different indications.

Prepared by CH, PB, SU, BR and HK, reviewed by AC, OD, KE, MG, CG, EH, UHR, CH, EP, HK, CL, UA, TM, BR, RS, MJ, SU, GZ.
valproic acid, which are therefore listed twice in Table 5. Moreover, it should be mentioned that studies are on the way to evaluate therapeutic reference ranges for children or adolescent patients and for elderly patients.

Estimation of the lower limit of the therapeutic reference range

Estimation of a therapeutic reference range (TRR) requires estimation of a lower and an upper limit of drug concentration in plasma. A generally accepted method for calculation of these limits does not exist. Whenever possible the lower limit of a drug’s therapeutic range should be based on studies on the relationship between a drug’s plasma concentration and clinical effectiveness. Below this limit, therapeutic effects are not significantly different from placebo. The optimum study design for evaluation of the lower limit of the therapeutic range is a prospective double-blind study where patients are treated with drug doses which lead to a defined plasma concentration range of the drug. Such a design was applied by Van der Zwaag and coworkers for patients treated with clozapine [678]. Patients were titrated to 3 different plasma concentrations of the antipsychotic drug. Significant superiority was found in patients with middle and high plasma concentration compared with low concentrations of clozapine. A similar design was applied for a blood-level study comparing imipramine and mirtazapine [98]. To conduct such studies, however, is a considerable logistic challenge. Fixed dose studies are therefore preferred for evaluation of the lower limit of the therapeutic reference range [672,674].

For the estimation of threshold values of the therapeutic reference range, receiver operating characteristic (ROC) analysis has proven helpful [289]. A ROC plot allows the identification of a cut-off value that separates responders from non-responders and estimates the sensitivity and specificity of the parameter “medication plasma concentration”. The usefulness of the ROC analysis has been demonstrated for a number antipsychotic and antidepressant drugs [461,505,510,703].

Estimation of the upper limit of the therapeutic reference range

In the first study on TDM in psychiatry [31] an U-shaped relationship between plasma concentration and clinical effect was reported for nortriptyline. The lack of effect at high concentrations was attributed to the mechanism of action of the tricyclic antidepressant drug on monoaminergic neurons. According to actual knowledge, however, it seems more likely that reduced amelioration at high concentrations is due to side effects. The upper limit of the therapeutic range is therefore defined by the occurrence of side effects, also in this guideline. For most side effects (type A adverse reactions), it is also assumed that they are a function of dose and drug concentration in the body [335]. This assumption has been confirmed for motor side effects of antipsychotic drugs [536] and for unwanted side effects of tricyclic antidepressant drugs [153,282]. For paroxetine, a positive correlation was found between drug concentration in plasma and serotonin syndrome symptoms [303]. When such data are available, it is possible to apply ROC analysis for the calculation of the upper limit of the therapeutic range [461]. For many psychotropic drugs listed in Table 5, however, valid data on both plasma concentration and the incidence of side effects are lacking. Case reports on tolerability problems or intoxications do often not include drug concentration measurements in plasma. Sporadic reports on fatal cases and intoxications are of limited value. Most blood concentrations reported to have caused death are far above drug concentrations that are associated with maximum therapeutic effects [544,622]. Post mortem redistribution of medications from or into the blood can lead to dramatic changes in blood levels [382,518], and the direction of the change does not follow a general rule [359]. Estimation of an upper threshold level above which tolerability decreases or the risk of intoxication increases is therefore more difficult than estimation of the lower threshold level, especially for drugs with a broad therapeutic index like SSRIs.

Estimation and definition of a laboratory alert level

As explained above, plasma concentrations with an increased risk of toxicity are normally much higher than the upper threshold levels of the therapeutic reference ranges for most psychotropic drugs shown in Table 5. For the present guidelines, we therefore defined an upper plasma concentration limit above which it seems unlikely that therapeutic effects may be enhanced and added a “laboratory alert level” which was defined as follows:

Definition

The “laboratory alert levels” reported in this guideline (Table 5) indicate drug concentrations above the recommended reference range that causes the laboratory to feedback immediately to the prescribing physician. The alert levels are based on reports on intolerance or intoxications and plasma concentration measurements. In most cases, however, it was arbitrarily defined as a plasma concentration that is 2-fold higher than the upper limit of the therapeutic reference range. The laboratory alert should lead to dose reduction when the patient exhibits signs of intolerance or toxicity. When the high drug concentration is well tolerated by the patient and if dose reduction bears the risk of symptom exacerbation, the dose should remain unchanged. The clinical decision, especially in case of unchanged dose needs to be documented in the medical file.

From population-based to subject-based reference values

All therapeutic reference ranges listed in Table 5 are orienting, population-based ranges. The population-derived ranges constitute descriptive statistical values which may not necessarily be applicable to all patients. Individual patients may show the optimum therapeutic response under a drug concentration that differs from the therapeutic reference range. Psychopharmacotherapy should therefore try to identify a patient’s “individual therapeutic concentration” to guide the treatment [61,523]. For lithium it has been shown that the recommended plasma concentration range depends on whether the patient is in an acute manic episode or needs maintenance therapy [593]. For clozapine, Gaertner and colleagues [232] determined optimal plasma concentrations required for stable remission of individual patients under maintenance therapy in a relapse prevention study.

Recommendations for measuring plasma concentrations of psychoactive drugs

The usefulness of TDM varies with the clinical situation and the particular drug involved. In case of suspected non-adherence to medication or intoxications, quantifying plasma concentrations is a generally accepted tool for all drugs and groups of patients. However, it is still a matter of debate if TDM should be imple-
TDM is highly recommended for most tricyclic antidepressants. It reduces the risk of intoxications [103, 381, 459, 510, 525, 527, 528, 530, 718], and for many tricyclic antidepressants, a plasma concentration – clinical effectiveness relationship has been shown. For SSRIs, TDM is of little clinical importance in clinical practice [6, 537, 644]. Toxicity of this type of antidepressants is low in comparison to most of the pre-SSRI antidepressants [48, 166, 314, 646, 715]. Data from Sweden revealed that TDM of SSRIs is cost-effective in elderly patients where it helped to use minimum effective doses [410]. For citalopram a recent observational study revealed that plasma concentrations on day 7 of treatment are predictive for later non-response [491]. Patients exhibiting citalopram plasma concentrations below 50 ng/mL had a significantly reduced improvement on the Hamilton rating scale for depression. Evidence for a statistically significant relationship between drug concentration and therapeutic outcome is lacking for the tetracyclic antidepressants maprotiline, mianserin and mirtazapine and also for trazodone and reboxetine, the monoamine oxidase inhibitors moclobemide and tranylcypromine.

TDM is strongly recommended for the typical antipsychotic drugs haloperidol, perphenazine and chlorpromazine, and for the atypical antipsychotics amisulpride, clozapine, olanzapine, and risperidone (Table 5). Overdosing may lead to extrapyramidal side effects. In the case of clozapine, there is a strong correlation between clozapine plasma levels and incidence of seizures. Avoiding overdosing of typical antipsychotic drugs by TDM is for the majority of patients a matter of quality of life rather than safety [136]. TDM of antipsychotics is also useful when medication is switched from the oral to the depot form, or vice versa.

With regard to the mood stabilizing and/or antimanic drugs lithium, valproic acid and carbamazepine, therapeutic reference ranges and toxic levels are well defined. Therefore TDM is strongly recommended for these drugs (Table 5). For lithium TDM is even the standard of care [133, 170, 185, 280, 395, 593, 706, 721]. For its long-term use, plasma concentrations of 0.5–0.8 mmol/L are advised. For an acute treatment with lithium, it may be justified to increase its concentrations up to 1.2 mmol/L. Compounds that have been shown to be effective as antidepressants are donepezil, rivastigmine, galantamine and memantine. TDM is rarely used for the treatment of dementia, though there is evidence that it can be useful. For donepezil, it has been shown that the patients’ improvement was significantly better if their plasma concentrations were above 50 ng/mL as compared to patients that showed lower drug concentrations [563].

Most anxiolytic and hypnotic drugs belong to the class of benzodiazepines. Anxiolytic and hypnotic effects are rapid. Treatment can therefore be guided by intermediate clinical impression rather than by TDM. In case of lack of therapeutic effects under usual doses, however, TDM may clarify if non-response was due to drug abuse that has led to tolerance or due to pharmacokinetic abnormalities. For alprazolam, TDM may be useful to suppress panic attacks [722].

The opiate agonists methadone, R-methadone (levomethadone), buprenorphine, l-α-acetylmethadol (LAAM) and slow-release formulations of morphine are used for the treatment of opioid addiction. TDM is indicated for patients treated with methadone or R-methadone. The usefulness of TDM for monitoring treatment with “anti-craving” medications such as acamprosate or naltrexone, employed for the treatment of alcohol use disorders, has recently been reviewed elsewhere [99]. TDM was recommended to enhance the moderate efficacy of these drugs.
For anticonvulsant drugs, TDM is well established, especially for old drugs which are more toxic than the new ones [499]. For antiparkinson drugs, TDM has not been established so far. For the dopamine agonists, data on reference ranges are scarce. For L-dopa, there is an imperfect correlation between plasma concentrations and short-term clinical response [479]. Nevertheless, we considered the pharmacologic properties of these neurological drugs (Table 1, 5), since psychiatric patients may receive antiparkinson drugs that possibly interfere with the action of psychotropic medication. For most of these drugs Cmax values are given.

Indications for measuring plasma concentrations of psychoactive drugs

Table 6 presents a list of indications for TDM in psychiatry. The validity of these indications has to be examined on an individual basis and evaluated for each case individually. Similar to any diagnostic test, TDM should only be requested when there is evidence that the result will provide an answer to a well defined question.

For drugs with well defined therapeutic reference ranges or with a narrow therapeutic index it makes sense to measure plasma levels for dose titration after initial prescription or after dose change. Even without a specific problem, there is sufficient evidence that TDM has beneficial effects for patients treated with these drugs. This holds true for lithium, tricyclic antidepressants, several antipsychotics or anticonvulsants (Table 5). For lithium, TDM is even mandatory for safety reasons.

In case of suspected non-adherence or lack of clinical improvement under recommended doses: TDM is a valid tool for treatment with all drugs considered in these guidelines. Loss of adherence is a major problem of long-term medication [10,55,401]. In patients with schizophrenia [55,351] and in patients with unipolar or bipolar disorders non-adherence ranges from 10 to 69% [401,439]. Methods used to measure adherence include pill counting, examining case-note recordings, interviewing patients or noting the attending physicians’ clinical judgement about adherence [11,355,685,708]. Studies have shown that clinicians cannot reliably predict their patients’ adherence [104,579]. TDM is advantageous, since it is an objective method and tells the prescribing physician if the drug is in the body at a concentration that is potentially sufficient for the expected clinical response. Deviations from the expected dose-related reference range (Table 4) indicate if the patient has taken his/her medication, and concomitant determination of metabolites is another approach to clarify if the drug was taken continuously as recommended. For interpretation, however, possible interactions with co-medications exhibiting enzyme inhibiting or inducing properties must be considered (Table 3). Reis and coworkers [546,547] analysed the compliance of patients who were treated with sertraline by repeated determination of serum drug concentrations of the parent compound and of the metabolite. Variations of the ratios of concentrations of norsertraline to sertraline were highly indicative for hidden and partial non-adherence. To be able to use this approach, these guidelines were supplemented with data on ratios of concentrations for 32 psychoactive drugs (Table 2). By taking several blood samples per day and by calculation the observed and expected time dependent plasma concentrations it can be differentiated if a low plasma concentration is due to reduced bioavailability, enhanced degradation or poor adherence. Pharmacokinetic modelling of the expected time dependent plasma concentration thereby considers a drug’s basic pharmacokinetic properties [4,78,340,626,654]. When clinical improvement under recommended doses is insufficient and the drug is well tolerated, TDM will clarify if the drug concentration is too low and if it makes sense to increase the dose.

When adverse effects are associated with clinical improvement under recommended doses, measurement of the plasma concentration may clarify if side effects are related to excessively high drug levels in the blood and if the dose should be decreased. When combining medications that are inhibitors or inducers of drug metabolizing enzymes (Table 1), pharmacokinetic drug interactions will occur if the comedication is a substrate of the inhibited or induced enzyme (Table 3). Dose adaption should be guided by TDM in combination with an inducer or inhibitor and avoid loss of action, poor tolerability or intoxication due to a pharmacokinetic drug-drug interaction [215,244,594]. With regard to environmental factors smoking is of high clinical relevance for drugs that are substrates of CYP1A2 (Table 1). The isoenzyme is dose dependently induced by constituents of cigarette smoke (polycyclic aromatic hydrocarbons, not nicotine). Its activity increases by 1.2-fold, 1.5-fold for 1.7-fold for 1–5, 6–10 and > 10 cigarettes smoked per day [201]. On the other hand, CYP1A2 activity decreases until the fourth day immediately on cessation of heavy smoking [200]. Smoking effects should therefore be considered when patients are under therapy with a CYP1A2 substrate (Table 1) such as clozapine [81,676], duloxetine [222] or olanzapine [749]. It should also be mentioned that many pharmacokinetic drug-drug interactions have been found by TDM either by chance or by retrospective analysis of TDM data bases [112,537].

In pharmacovigilance programs, the safety of drug use is supervised under naturalistic conditions [271,285]. In case of observed adverse events, measurement of plasma concentrations is most helpful for clarification [335].

Relapse prevention is a major goal of maintenance treatment. Reduction of relapse rates by TDM is highly cost-effective, as relapses can lead to hospitalization [377]. In schizophrenic patients, it has been shown that fluctuations of clozapine plasma concentrations are predictive for relapses [232,670] and rehospitalizations [627]. In these patients, TDM may help reduce the risk of relapse or recurrence by increasing adherence to the medication. One day in the hospital is 4–16 times more expensive than a single drug concentration measurement in the laboratory.

Recommendation

Though clinical evidence is still scarce, we recommend regular monitoring of plasma concentrations under maintenance therapy, at least every 3–6 months, to prevent relapses and rehospitalizations. The frequency of TDM requests may be increased if patients are known to be non-adherent to the medication or in case of changes of co-medications or of smoking that affect the pharmacokinetics of the drug.

In patients exhibiting genetic peculiarities of drug metabolizing enzymes, doses must be adapted. Kirchheiner and coworkers [362,365] calculated doses for PM or UM of CYP2D6 based on pharmacokinetic and pharmacodynamic findings. However, even in the case of a confirmed abnormal CYP genotype, TDM is recommended, because genotyping can only roughly predict to
which extent the plasma concentration may be changed in the individual patient [496, 497, 625]. For special groups of patients, such as pregnant or breastfeeding patients, children or adolescent patients [22, 373, 194], individuals with intellectual disabilities [158, 300], or elderly patients, especially patients aged above 75 years [374], TDM is highly recommended. Any psychopharmacologic therapy of pregnant or breastfeeding women should assure that the plasma concentration of the drug is in the therapeutic reference range to minimize the risk of relapse on the mother’s side and, at the same time, to minimize risks associated with drug exposure of the fetus or the child [169, 174]. Renal clearance and the activity of the CYP isoenzymes 3A4, 2D6 and 2C9, and uridine 5’-diphosphate glucuronosyltransferase are increased during pregnancy, whereas activities of CYP1A2 and 2C19 decrease [21]. TDM in pregnant women and/or mothers should be carried out at least once per trimester and within 24 h after delivery [65]. Many psychoactive drugs are not approved for use in children or adolescents [248]. Pharmacokinetics and pharmacodynamics change during development [194, 438, 514, 516]. In adolescents suffering from psychotic disorders, comorbid drug abuse is very common, and compliance with an antipsychotic treatment is generally marginal [318]. Therefore, TDM is recommended in these patients. To raise data on the effectiveness and tolerability of psychoactive drugs under every day conditions, a TDM network was established for child and adolescent patients [see http://www.tdm-kjp.de/eng/contact.html]. In elderly patients, who frequently are hypersensitive to medication, TDM is helpful to distinguish between pharmacokinetic and pharmacodynamic factors when adverse effects occur [666]. Ageing involves progressive impairments of the functional reserve of multiple organs [407], especially renal excretion, and body composition changes significantly [361, 374]. Hepatic clearance can be reduced by up to 30%. Phase I reactions are more likely to be impaired than Phase II reactions. On the other hand, there are no age-dependent changes in CYP isoenzyme activity [374]. Age-related changes in physiologic and pharmacokinetic functions as well as the comorbidity and polypharmacy complicate pharmacotherapy in the elderly [125]. Therefore, TDM should be used for these patients to improve safety and tolerability of psychopharmacotherapy.

In individuals with intellectual disabilities, new generation antipsychotic drugs are frequently used. Recently published guidelines recommend TDM for these patients, at least when treated with risperidone or olanzapine [158]. For ethical and legal reasons, patients with intellectual disabilities are excluded from clinical trials. On the other hand, many of these patients need medication. In these individuals, it may be difficult to differentiate between morbidogenic and pharmacogenetic reasons for symptom aggravation. Though evidence is poor, TDM is recommended to guide the pharmacotherapy of these patients [158]. In forensic psychiatry the primary aim of pharmacotherapy, consisting mostly antipsychotic drugs, is reduction of dangerous behaviour [458, 462]. To consistently reduce the risk of violence and aggression, adherence to the prescribed medication is essential [658]. Therefore, TDM is recommended for this group of psychiatric patients. It is, however, not clear if effective plasma concentrations are identical in forensic and general psychiatry patients. Castberg and Spigset [113] analyzed data obtained by survey in a high security forensic unit and found higher doses in forensic patients than in a control group. The dose related plasma concentrations were significantly lower for olanzapine but higher for quetiapine in the forensic patients than in the control group.

The indication "problem occurring after switching from an original preparation to a generic form (and vice versa)" is still under-investigated and data are scarce [124, 139]. Another potential indication for TDM not listed in Table 6 is the increasing availability of counterfeit drugs on the internet [599], WHO launched a program in 2006 to combat this illegal industry. There are no data published on this type of market concerning psychotrophic drugs, but patients may be co-medicated (mostly auto-medication) with other drugs obtained from this source. The counterfeit medications may not comply with purity and dosage standards and therefore increase the risk for interactions.

Table 6 Typical indications for measuring plasma concentrations of medications in psychiatry.

- Dose optimization after initial prescription or after dose change
- Drugs, for which TDM is mandatory for safety reasons (e.g., lithium)
- Suspected complete or partial non-adherence (non-compliance) to medication
- Lack of clinical improvement under recommended doses
- Adverse effects and clinical improvement under recommended doses
- Combination treatment with a drug known for its interaction potential or suspected drug interaction
- TDM in pharmacovigilance programs
- Relapse prevention under maintenance treatment
- Recurrence under adequate doses
- Presence of a genetic particularity concerning drug metabolism (genetic deficiency, gene multiplication)
- Pregnant or breast feeding patient
- Children and adolescent patient
- Elderly patient (>65 y)
- Individuals with intellectual disabilities
- Patients with pharmacokinetically relevant comorbidities (hepatic or renal insufficiency, cardiovascular disease)
- Forensic patient
- Problems occurring after switching from an original preparation to a generic form (and vice versa)

Practical Aspects for TDM in Psychiatry

Essential for an effective TDM service is the availability of appropriate analytical methods that produce results within a reasonable time, i.e., 48 h, and advice from someone who understands pharmacokinetics and therapeutics [184]. As shown in Fig. 1, the TDM process starts with the request and ends with the final decision about how to adjust a given patient’s therapeutic regimen by the health care professional.

Request for plasma concentration quantification

As mentioned above, TDM should only be requested when there is evidence that the result will provide an answer to a specific question. If it is not clear what the question is, the answer is of little value. Typical indications are listed in Table 6. A single measurement is often insufficient for problem solving. For example, a series of measurements may be required at appropriate intervals to clarify if a low plasma concentration is either due to poor compliance, reduced bioavailability or abnormally rapid elimination.
Fig. 1 Schematic overview of the TDM process as a guide for psychopharmacotherapy. Routine TDM is primarily applied to drugs with a narrow therapeutic index and a well-defined therapeutic reference range. However, TDM is useful for any psychotropic drug when addressing special therapeutic problems such as “therapy refractoriness” or side effects under recommended dosage.

Pre-TDM: Indication for TDM? Availability of laboratory and pharmacological advice?

TDM Request
Completed request form: demographic data, diagnosis, medication, improvement, side effects

Routine monitoring
Specific problem
Dose titration
Maintenance therapy for relapse prevention
Insufficient response, improvement and side effects at therapeutic doses, potential drug interaction or other problems

Blood sample collection, storage and shipment
Steady-state at the time of minimal drug concentration (trough level)

Laboratory measurement
Use of validated method (linearity, accuracy, precision, sensitivity, specificity)
Internal and external quality controls

Communication of results
Concentration of drug (and metabolite), unit, reference range
Interpretation

Clinical decision making
Dose correction, continuation or change of medication
Further supervision of pharmacotherapy

Routine monitoring
Specific problem
Insufficient response, improvement and side effects at therapeutic doses, potential drug interaction or other problems

Blood sample collection, storage and shipment
Steady-state at the time of minimal drug concentration (trough level)

Laboratory measurement
Use of validated method (linearity, accuracy, precision, sensitivity, specificity)
Internal and external quality controls

Communication of results
Concentration of drug (and metabolite), unit, reference range
Interpretation

Clinical decision making
Dose correction, continuation or change of medication
Further supervision of pharmacotherapy

TDM Request
Completed request form: demographic data, diagnosis, medication, improvement, side effects

Routine monitoring
Specific problem
Dose titration
Maintenance therapy for relapse prevention
Insufficient response, improvement and side effects at therapeutic doses, potential drug interaction or other problems

Blood sample collection, storage and shipment
Steady-state at the time of minimal drug concentration (trough level)

Laboratory measurement
Use of validated method (linearity, accuracy, precision, sensitivity, specificity)
Internal and external quality controls

Communication of results
Concentration of drug (and metabolite), unit, reference range
Interpretation

Clinical decision making
Dose correction, continuation or change of medication
Further supervision of pharmacotherapy

TDM Request
Completed request form: demographic data, diagnosis, medication, improvement, side effects

Routine monitoring
Specific problem
Dose titration
Maintenance therapy for relapse prevention
Insufficient response, improvement and side effects at therapeutic doses, potential drug interaction or other problems

Blood sample collection, storage and shipment
Steady-state at the time of minimal drug concentration (trough level)

Laboratory measurement
Use of validated method (linearity, accuracy, precision, sensitivity, specificity)
Internal and external quality controls

Communication of results
Concentration of drug (and metabolite), unit, reference range
Interpretation

Clinical decision making
Dose correction, continuation or change of medication
Further supervision of pharmacotherapy

LABORATORY
Address
Phone
Fax

REQUESTING HOSPITAL / DOCTOR
Address
Phone in case of alert
Fax

PATIENT DETAILS
Name or Code
□ Inpatient
□ Outpatient
Diagnosis / Symptom(s)
Date and time of blood withdrawal

Date of birth
Sex
Weight (kg)
Smoker
□ No
□ Moderate (<10 cig/day)
□ Heavy (>10 cig/day)

REASON FOR REQUEST
(tick more than one if applicable)
□ Dose adaptation
□ Insufficient improvement
□ Adverse effects (specify below)

□ Control under maintenance therapy
□ Other (to be specified)

SEVERITY OF ILLNESS
(CGSI)
How mentally ill is the patient at this time?
□ Not at all (1)
□ Borderline mentally ill (2)
□ Moderately ill (3)
□ Markedly ill (4)
□ Severely ill (5)
□ Extremely ill (7)

IMPROVEMENT
(CGHI)
Change compared to condition at admission?
□ Very much improved (1)
□ Much improved (2)
□ Minimally improved (3)
□ No change (4)
□ Minimally worse (5)
□ Much worse (6)
□ Very much worse (7)

SIDE EFFECTS (UKU)
□ not at all (0)
□ a little (1)
□ moderate (2)
□ severe (3)

□ Concentration difficulties
□ Asthenia
□ Sleepiness/Sedation
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference
□ Dystonia
□ Rigidity
□ Hypokinesia/Akinesia
□ Hyperkinesia
□ Tension/inner unrest
□ Sleep disturbances
□ Emotional indifference

Drug(s) to be assayed
Formulation
Daily dose
Date started
Time of last dose

Other medications (include herbals, over-the-counter drugs etc)

TDM request: Blood should be withdrawn under steady-state conditions, preferably in the morning BEFORE taking the morning dose. Return the completed form, together with a minimum of 2 ml serum or plasma.

Date of sample receipt: _____________

Signature: _____________
TDM requests must include a completed request form (Fig. 2) which is essential for effective drug concentration measurements and an adequate interpretation of the results [501,635]. The form should contain the patient name or code, demographic data, diagnosis, medication, reason for the request, the commercial and the generic name of the drug and its dose, the galenic formulation, the time of the last change of the dose, time of blood withdrawal. A brief comment on the clinical situation should be given for interpretation of the results. We recommend to use objective symptom rating, e.g., application of the clinical global impression (CGI) scale [283], to measure severity of illness and therapeutic improvement. The summary form of the UKU scale is useful to evaluate the occurrence and severity of side effects [402]. However, documented feedback to questionnaires indicates that clinicians often do NOT want to put that much information on the form. Moreover, the filled-in information is often not accurate. As an alternative, feedback by phone may be offered for interested physicians.

When interpretation of the results is requested from the laboratory, it is absolutely necessary to fill out the request forms adequately and completely. Thereby computerized ordering of TDM has advantages. It is inexpensive and it guides the ordering physician to give the relevant information required for interpretation in a comfortable way. Computerized ordering, however, is still not widely used. But effective packages are on the way to become available (e.g., www.konbest.de).

Blood sample collection
Generally, TDM is carried out in plasma or serum samples. The analysis of whole blood, which is long established for immunosuppressant drugs by using immunoassays [693], has been abandoned for TDM in psychiatry. There is no consensus whether plasma or serum should be preferred. Definite experimental data are still lacking which clearly demonstrate differences in the drug concentrations using either plasma or serum. The few available comparisons indicate that values obtained from serum or plasma can be used interchangeably [308]. Most psychoactive drugs are intensively bound to blood cells of plasma proteins. Concentrations of neuropsychiatric drugs reported in this guideline refer to the total drug fraction in accordance with the literature. For imipramine, it has been shown that the drug is rapidly and almost totally cleared by the brain through a single passage in the microvasculature [555]. The extraction was not significantly affected in the presence of albumin, lipoproteins or erythrocytes. For nortriptyline, statistical relationships between free levels of drug and clinical response were found to be insignificant [506]. Therefore it seems likely that the clinical response depends on the total drug fraction. Analysis of psychotropic medications in other materials such as urine, spinal fluid, tears, hairs or maternal milk have not been introduced for TDM purposes, and no validated data are available which deal with therapeutic concentrations. Saliva offers the advantage of non-invasive collection [20,25,356]. However, the drug concentration in saliva corresponds to the free (i.e., non-protein-bound) fraction of the drug in blood – which is for most psychopharmacologic medications only 10% or less of the total concentration. Thus detection problems may occur when using saliva instead of blood plasma or serum. In any case, more data will have to be obtained for saliva as a matrix for measurement of drug concentrations.

With few exceptions, TDM relies on trough steady-state plasma concentrations. Blood should therefore be collected after at least 4 drug elimination half-lives after the start of or a change in dosage and during the terminal β-elimination phase. For most psychotropic drugs, elimination half-lives vary between 12 and 36 h (Table 5). Notable exceptions are quetiapine, trazodone, or venlafaxine, which display elimination half-lives around 6 h. Fluoxetine and aripiprazole have longer elimination half-lives. In clinical practice, the appropriate sampling time for most psychoactive drugs is one week after stable daily dosing and immediately before ingestion of the morning dose, which usually is 12–16h (or 24h if the drug is given once daily in the morning) after the last medication. If, for logistics reasons, blood can only be collected late in the morning, the patient should not be medicated before blood withdrawal. In an outpatient setting it is important to indicate exactly the time of administration of the last dose for interpretation. Trough levels can then be extrapolated by pharmacokinetic modelling.

In patients treated with a depot preparation of an antipsychotic drug, blood should be sampled immediately before the next injection. Formulations of antipsychotic drugs such as haloperidol decanoate or risperidone microspheres are characterised by a slow absorption after intramuscular administration. Maximum plasma concentration of first generation depot antipsychotics are reached after 1–14 days after injection, and the apparent elimination half-life is 2–3 weeks [647]. Similar properties exhibits the newly introduced paliperidone palmitate [131]. For risperidone microspheres the mean time to peak concentrations is 4 weeks and its plasma half life 4–6 days [647]. For other drugs delivered in extended or retarded release formulations like paliperidone [70] or quetiapine [212], special attention has to be given to the time of drug intake for correct interpretation (see Table 5). In these formulations, the time of maximum plasma concentration is delayed but the elimination half-life remains essentially unchanged. The long acting olanzapine pamoate is a new depot formulation [399]. The salt slowly releases olanzapine from the injection site into the muscle tissue. However, it dissolves rapidly when it is in contact with blood or plasma. The latter results in high plasma concentrations and may lead to marked sedation and delirium, the so called post-injection syndrome [399,647]. Considering this special problem it could be useful to control plasma concentrations of olanzapine shortly (i.e., about 2 h) after the i.m. injection to monitor if plasma concentrations increase. This approach, however, relies on the rapid quantification of olanzapine.

TDM may of course be carried at any time after drug ingestion if unexpected side effects are observed. It is not necessary to measure trough levels, but the dosing schedule should be reported for interpretation.

Storage and shipment of blood samples
When samples must be stored and sent frozen, it is required to prepare serum or plasma before freezing, since it is not possible to prepare serum or plasma from frozen blood. With few exceptions, serum or plasma samples can be stored in the dark (at 4°C) for at least 24 h, and most drug samples can be sent without freezing [305]. Exceptions are light and/or oxygen sensitive substances. For the determination of bupropion or methylphenidate, however, serum samples must be frozen or extracted and stabilized immediately after blood withdrawal and centrifugation (see Table 5). Olanzapine must be stored frozen (–20°C) if not analysed within 72 h [305]. The laboratory should give instructions on its web site or the request form how
to collect (plasma volume, labelling of the samples), store and mail the sample.

Laboratory measurements

Selective and sensitive analytical methods for the quantitative evaluation of drugs and their metabolites (analytes) are essential for the successful conduct of TDM. Methods must be validated which includes all of the procedures that demonstrate that a particular method used for quantitative measurement of analytes in a given biological matrix is reliable and reproducible for the intended use. The fundamental parameters for this validation include (1) accuracy, (2) precision, (3) selectivity, (4) sensitivity, (5) reproducibility and (6) stability. Validation involves documenting, through the use of specific laboratory investigations, that the performance characteristics of the method are suitable and reliable for the intended analytical applications. The acceptability of analytical data corresponds directly to the criteria used to validate the method [114,219].

For psychoactive drugs, chromatographic techniques (gas chromatography (GC), and high-performance liquid chromatography (HPLC), in combination with suitable detection methods, are preferred [186]. They are sufficiently precise, accurate and robust and can be adapted to the analysis of a huge number of drugs. A disadvantage is the need for sample preparation before chromatographic separation and hence a limited sample throughput. Throughput can be enhanced by automated sample preparation prior to GC or HPLC. Some laboratories have introduced HPLC with column switching which allows direct injection of plasma or serum into the HPLC system. Such procedures are available for a number of antidepressant [269,292–294,297, 298,702,710] and antipsychotic drugs [368,369,571–573,709–712]. Another high-throughput chromatographic method is liquid chromatography coupled with mass spectroscopy (LC-MS) especially tandem MS (LC-MS/MS). LC/MSMS methods can be applied to almost any psychotropic drug including metabolites [577]. They are most sensitive and selective and can be used without time-consuming sample preparation. Many compounds can be analysed simultaneously. An excellent example is the LC-MS/MS method described by Kirchherr and Kühl-Felten [366]. This method was validated for over 50 psychoactive drugs. Disadvantageous is that LC-MS/MS methods are high costs. Moreover, quantification can be problematic due to ion suppression and the availability of suitable calibration standards, preferentially deuterated analogues [584].

In case of suspected intoxications, TDM methods should enable drug analysis within 1–2h [215]. For this purpose automated methods are advantageous.

The laboratory should not only analyse the drug but also its active metabolites, e.g., bupropion plus hydroxybupropion, clo mipramine plus desmethylclopimamine, fluoxetine plus norfluoxetine, naltrexone plus naltrexol, risperidone plus 9-hydroxyrisperidone or venlafaxine plus O-desmethylvenlafaxine (see Table 5). For some drugs, the determination of metabolites that do not contribute to the overall clinical effect (e.g., norsertraline, normirtazapine, norclozapine) is also useful to monitor drug adherence of the patient [546], to get information on his/her capacity to metabolise drugs, or to interpret drug-drug interactions when drugs are involved exhibiting enzyme inhibiting or inducing properties (see Table 2). “Normal” ratios of concentrations of metabolites to parent drugs that are expected in 68.3% of the patients are listed in Table 3. Any ratio outside the reported “normal” range should be considered as a signal pointing to individual abnormalities due to a drug-drug-interaction, gene polymorphism, altered liver function, non-adherence or drug intake few hours before blood withdrawal.

The assay of enantiomers of chiral compounds requires either stereoselective derivatisation of the drugs prior to their quantification, or their separation by chiral chromatographic GC or HPLC columns. LC-MS/MS may be the method of choice. As an example, the TDM of the enantiomers of methadone using a classical detection method such as fluorescence or ultraviolet light absorption is often jeopardized by comedication or by coconsumption drugs of abuse. These problems may be circumvented by use of a mass detector, preferably a tandem mass spectrometer.

Within the therapeutic reference range, intraday- and interday precision should not exceed 15% (coefficient of variation) and accuracy should not deviate more than 15% from the nominal value [114,219].

To ensure quality and reliability of plasma concentrations assays, internal and external quality control procedures are mandatory. Samples must contain suitable internal standards, and each series of samples must include internal control samples. If standards are not available commercially, they should be prepared by personnel other than those performing the assays and by separate weighing of reference material. Reporting of results requires that the results of the quality controls are within the expected range. If quality controls are outside the expected range, the reason underlying the outlier needs to be clarified and documented.

The laboratory has to participate in an external quality assessment scheme, although this is not a legal requirement in all countries. For neuropsychiatric drugs, the first external quality program was introduced by Cardiff Bioanalytical Services Ltd in 1972 [720]. It has currently 450 participants from 36 countries (www.heathcontrol.com). Instead e.V. (www.instantdev.de/ringversuche/) is another recommended provider of external control, the external quality control scheme was recently expanded to multiple psychoactive drugs samples. Moreover, reference materials are also available from forensic chemistry (http://www.pts-gtfch.de/).

Communication of results

The concentration of the psychoactive drug as well as that of active metabolites contributing to the therapeutic action should be reported with reference ranges (see Table 5) either in mass or molar units. We recommend the use of mass units to relate concentration to dose. Laboratories vary in the presentation of their results. The clinician should take note of the units (i.e., ng/mL, μg/L, μmol/L, or mmol/L) in which the results of the analysis are expressed. This is especially recommended for comparisons of TDM values obtained from different laboratories or with those in the literature. To transform molar units into mass units and vice versa conversion factors are given in Table 5.

When drug concentrations are below the limit of quantification (LOQ), which refers to the lowest concentration of the standard curve that can be measured with at least 20% accuracy and precision, this limit should be indicated.

The results should be available for decision making within a clinically meaningful time. Although 24h TDM service would be desirable, 48h turnaround time is sufficient in most cases. In case of suspected intoxications, a few hours service is necessary [215]. To assist rapid intervention in patients at risk for toxicity or loss of tolerability, prompt information (phone call) of the
treatment physician is required when the laboratory measures drug concentrations above the “laboratory alert level” which was newly defined (see above) in the present consensus guidelines (Table 5).

Interpretation of results

We recommend that interpretation and pharmacologic advice are provided with every report. Expert interpretation of a drug concentration measurement and the adequate use of the information are essential to ensure the full clinical benefit of TDM. Reporting of results with inclusion of dose recommendations and other comments must be guided by the best available evidence. Expert knowledge may be necessary to calculate dose corrections or to analyse drug-drug interactions. It is therefore advantageous for the clinician to choose a laboratory that offers this service. Otherwise, the treating physician, a clinical pharmacologist or a trained expert of the clinic has to interpret the results. Access to specialist advice is also necessary if TDM results suggest that genotyping may be advisable [335].

Diagnosis and drug dose are important information for interpretation, since they permit a judgement on whether a result is plausible or not. Moreover, it must be controlled if blood samples were collected under recommended conditions, especially when the plasma concentration is unexpectedly high in an outpatient. When the drug was taken a few hours before blood sampling the drug concentration can be several-fold higher than the trough level.

For the interpretation of the results, it should not only be considered whether the plasma concentration of the drug is within the “therapeutic reference range” (Table 5). It must also be considered if the drug plasma concentration is consistent with the dose (Table 4). A plasma concentration may be outside the therapeutic reference range, just because a low or high dose was taken. In addition, it is wise to take into account the level of evidence underlying the “therapeutic reference range” of the particular drug (Table 5). It should also be considered if the daily drug dose was given as a single or a multiple dose.

Often it is necessary to deal with pharmacokinetic properties such as metabolic pathways, enzymes involved and substrate and inhibitor properties of all drugs taken by the patient for interpretation of the results. Supportive information is therefore given in the present updated guidelines showing literature based substrate (Table 1) and inhibitor or inducer properties of drugs (Table 3) to deal with possible drug-drug interactions.

Any drug concentration outside its dose-related reference range (Table 5) should alert the TDM laboratory to actively look for non-average pharmacokinetic drug disposition of the patient, drug-drug-interactions, gene polymorphisms that give rise to poor or ultra rapid metabolism, altered function of the excretion organs liver and kidneys, age and/or disease-related changes in the patient’s pharmacokinetics, compliance (adherence) problems, a non-steady state and even signal interference from other medications that the patient may not have declared to the prescribing physician (e.g., St. John’s wort) in the laboratory analysis. It may also be informative to calculate the dose related reference range (Table 4) if the drug concentration lies outside the recommended therapeutic reference range (Table 5) [285].

Plasma concentrations must be interpreted with the clinical presentation in mind. Recommendations on dosage changes constitute the most frequent advice. Other information which could be of help for the physician are those related to genetic polymorphisms, risks of pharmacokinetic interactions in the case of polypragmasy, pharmacokinetic properties of the drug in patients belonging to a “special population”, e.g., elderly patients, or patients with hepatic or renal insufficiency. For the treatment of pain, relatively low plasma concentrations of tricyclic antidepressants may be sufficient. They may be within the “dose related reference range” (Table 4) but outside the “therapeutic reference range” of Table 5 which was established for the indication of depression.

A laboratory may recommend that an additional sample should be taken after a certain period, because in cases with unusually low or high plasma concentrations, repeated measurements may help to decide whether the patient’s adherence is inconsistent (irregular intake of the drug) or whether the patient is an abnormal metabolizer.

Since the interpretation of TDM results relies on complex quantitative relationships, training in clinical psychopharmacology and pharmacokinetics and the application of TDM is essential. Regular conferences with discussion of the interpretation of real cases are most helpful for learning. It is also recommended that junior psychiatrists interpret the results under supervision of an expert.

Clinical decision making

A TDM result is a guide to proper dosing of the individual patient. The physician has to be aware that, under optimal conditions, reporting of results with inclusion of dose recommendations and other comments by the laboratory is guided by the best available evidence [310]. The laboratory, however, has only a restricted knowledge of the clinical situation. On the other hand, most treating physicians have limited pharmacokinetic knowledge. Therefore it is essential to be aware that optimal TDM is an interdisciplinary task that requires close communication between laboratory and clinical experts.

If the plasma concentration of the drug is within the therapeutic reference range, an adaptation of the dose is, of course only recommended when clinical reasons, such as adverse effects or non-response clearly justify such a decision. Evidently, the treating physician has to decide whether the treatment strategy is to be changed or not. On the other hand, when the advice given on the TDM report is not followed, the reason for this course of action must be substantiated to allow evaluation of the treating physician’s decision should the patient come to harm. Recommendations for such an evaluation in a court of law have been recently published by the TDM-AGNP group [741].

In patients with abnormally rapid elimination it may be useful to prescribe a dose above the maximal recommended dose, since such patients can exhibit drug concentrations below the reference range under standard doses. However, the medication should be changed if the patient exhibited sufficiently high drug concentrations for a sufficiently long treatment period, i.e., for at least 2 weeks, and did not improve by at least 20%. When adverse effects are associated with clinical improvement under recommended doses, measurement of the plasma concentration may clarify if side effects are related to exceedingly high drug levels in the blood. In this situation, the dose can be decreased, normally without risk of loss of action.

For the treatment with antidepressant or antipsychotic drugs, there is good evidence that clinical non-improvement at week 2 is highly predictive for later response and remission [119, 138, 392, 620, 621, 638]. Especially the absence of early improvement
appears to be a highly reliable predictor of later non-response [358]. For dose titration with antidepressant and antipsychotic drugs we therefore recommend to include symptom rating by the treating physician [138] at baseline and at week 2 in addition to drug concentration measurements. **Fig. 3** summarizes the above recommendations in a flow chart. When further plasma concentration measurements are recommended after a modification of the dose or after prescription of a comedication that is known to inhibit or enhance the metabolism of the drug to be measured, the next TDM should be delayed until steady-state conditions are reached again. For this, the terminal elimination half-life of the drug has to be considered (**Table 5**).

Pharmacogenetic tests in addition to TDM
Concentrations outside the reference range may be due to gene polymorphisms that give rise to slow/rapid metabolizers. As a consequence, the laboratory may also suggest that a pharmacogenetic test should be carried out [14,144,158,193,335,362,365,377,623,624,675]. Genotyping, however, is not available in all TDM laboratories, and we recommend consultation of specialized laboratories for interpretation of the results. Situations and cases where pharmacogenetic tests could advantageously be combined with TDM are explained in more detail by Jaquenoud Sirot and coworkers [335]. Some of the most important indications for the combination of genotyping with TDM are the following:

- the patient is genotyped as a PM or UM, the medication should not automatically be replaced by another as suggested by some authors, but the dose can often be adapted, using clinical judgement and TDM.

Conclusions and Perspectives

The choice of pharmacologic treatment should always take into account the clinical presentation of the patient and consider psychopathology and drug history. TDM is, if used appropriately, a valid tool for optimising pharmacotherapy. During the past decades, knowledge on the metabolic fate and actions of psychotropic drugs in the human body has markedly advanced. Pharmacogenetic and environmental factors have been identified and summarized in the first part of this review. The present updated AGNP guidelines describe the best practice of TDM in psychiatry in order to promote the appropriate use of TDM. Although a considerable body of data for plasma concentrations of psychotropic drugs has been accumulated and although our knowledge about the quantitative relationship between plasma concentration and therapeutic response has improved, there is still a need to conduct further controlled and randomised concentration-response studies to improve the quality of data on therapeutic reference ranges. We also recommend inclusion of pharmacokinetic measurements during phase III and IV studies. Product information should be supplemented with TDM related data to enhance the therapeutic effectiveness of psychoactive drugs. Analyses of German [671] and French [568] summaries of product characteristics (SPC) revealed that many SPC do not contain TDM related information in spite of available valid clinical-scientific evidence. Another need for research is to study cost-effectiveness of TDM when the method is used in an appropriate way. Polypharmacy is very common in psychiatry while essentially all TDM recommendations are based on single-medication trials. Thus, the efficacy of drug combinations constitutes a severely under-investigated area of TDM. Finally, one should never forget that TDM is an interdisciplinary task that sometimes requires the respectful discussion of apparently discrepant data so that, ultimately, the patient can profit from such a joint effort.
Conflicts of Interest

Christoph Hiemke has received speaker’s or consultancy fees from the following pharmaceutical companies: Bristol-Meyers Squibb, Pfizer, Lilly and Servier. He is managing director of the psiac GmbH which provides an internet based drug-drug interaction program for psychopharmacotherapy. He reports no conflict of interest with this publication. Pierre Baumann has received speaker’s or consultancy fees from almost all pharmaceutical companies selling psychotropic drugs in Switzerland. He reports no conflict of interest with this publication. Niels Berge mann, Mirjam Fric, Christine Greiner, Hartmut Kirchherr, Ulrich C Lutz, Bernhard Rambeck, Bernd Schoppek, Julia C Stingl, Manfred Uhr and Roland Waschgler have no conflict of interest to declare. Andreas Conca has served as a consultant for Lilly, BMS, Pfizer. He has served on the speakers’ bureau of Lilly, BMS, Astra Zeneca, Lundbeck, Italfarma, Janssen. He reports no conflict of interest with this publication. Otto Dietmaier has received speaker’s or consultancy fees from Bristol-Myers Squibb, Jans sen, Eli Lilly and Lundbeck. He reports no conflict of interest with this publication. Ursula Havemann-Reineck has received speaker’s or consultancy fees or unrestricted educational grants from AstraZeneca, Bristol-Myers Squibb, Cephalon, Essex, Janssen Cilag, Lundbeck, Pfizer, Schering-Plough, Wyeth. She reports no conflict of interest with this publication. Ekkehard Haen has served as a consultant and received speaker’s fees from Janss en-Cilag, Lilly, Pfizer, GlaxoSmithKline, AstraZeneca, Bristol-Myers Squibb, Otsuka, Bayer Vital, Servier and Südmedica GmbH. He reports no conflict of interest with this publication. Karin Ebberts has received speaker’s fees or travel grants from Wyeth and Medice. She participated in performing clinical trials for AstraZeneca, Janssen-Cilag, Lilly and Shire. She reports no conflict of interest with this publication. Gerhard Gründer has served as a consultant for Astra Zeneca, Bristol-Myers Squibb, Eli Lilly, Johnson & Johnson, and Otsuka. He has served on the speakers’ bureau of Astra Zeneca, Bristol-Myers Squibb, Eli Lilly, Janssen Cilag, Otsuka, Pfizer, Servier, and Wyeth. He has received grant support from Alkermes, Bristol-Myers Squibb, Eli Lilly, and Johnson & Johnson. He is co-founder of Pharma-Image – Molecular Imaging Technologies GmbH. He reports no conflict of interest with this publication. Eveline Jaquenoud Sirot is managing director of mediQ which sells an internet based drug-drug interaction program for psychiatry. She reports no conflict of interest with this publication. Gerald Zernig has received speaker’s fees or travel grants or unrestricted educational grants from AstraZeneca, Janssen-Cilag, Lilly and Servier. He reports no conflict of interest with this publication.

Acknowledgements

The authors thank Sonja Brünen, Elnaz Ostad Haji, Christiane Knoth and Viktoria Steffenhofer for helping us to calculate ratios of plasma concentrations of metabolite and parent compound reported in the literature and shown in Table 2. We thank Ralf Köber for his help in evaluating the therapeutic reference ranges of antidementia drugs. We thank Michaela Jahnke, Christiane Kobelt and Nina Wenzel for most helpful editorial assistance, especially for organization of the long list of references.

Affiliations

1 Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Germany
2 Department of Psychiatry, University of Lausanne, Prilly-Lausanne, Switzerland
3 Psychiatric Hospital, Bad Arolsen, Germany
4 Psychiatric Hospital, Bolzano, Italy
5 Psychiatric Hospital, Weinsberg, Germany
6 Department Child and Adolescent Psychiatry, University Hospital of Würzburg, Germany
7 Klinik des Bezirks Oberbayern (kbo) Salzach-Inn-Klinikum, Wasserburg a. Inn, Germany
8 Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
9 Department of Psychiatry and Psychotherapy, University of Aachen, Germany
10 Clinical Pharmacology, Department of Psychiatry and Psychosomatics, University of Regensburg, Germany
11 Department of Psychiatry and Psychosomatics, University of Göttingen, Germany
12 Psychiatric Hospital, Königshofen, Brugg, Aargau, Switzerland
13 Medical Laboratory Bremen, Germany
14 Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
15 Psychiatric Hospital, Paffenhofen, Germany
16 Psychiatric Hospital, Marburg and Gießen, Germany
17 Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Würzburg, Germany
18 Center of Epilepsy, Bielefeld, Germany
19 Psychiatric Hospital, Haar, Germany
20 Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Germany
21 Max Planck Institute of Psychiatry, Munich, Germany
22 Aristo Pharma GmbH, Berlin, Germany
23 Psychiatric Hospital, Feldkirch, Austria
24 Experimental Psychiatry Unit, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Austria

References

2 Abernethy DR, Greenblatt DJ, Shader RL. Imipramine and desipramine disposition in the elderly. J Pharmacol Exp Ther 1985; 232: 183–188
29 Aravagiri A, Yuwiler A, Marder SR. Distribution after repeated oral administration of different dose levels of risperidone and 9-hydroxy-risperidone in the brain and other tissues of rats. Psychopharmacology 1998; 139: 356–363
33 Bachmann CJ, Rieger-Gies F, Heinzel-Gutenbrunner M et al. Large variability of aripiprazole and dehydroaripiprazole serum concentrations in adolescent patients with schizophrenia. Ther Drug Monit 2008; 30: 462–466
38 Bakken G, Rudberg I, Christensen H et al. Metabolism of quetiapine by CYP3A4 and CYP3A5 in presence or absence of cytochrome B5. Drug Metab Dispos 2009; 37: 254–258
43 Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008; 40: 553–624
null

Kemp DE, Canocy SJ, Brecher M et al. Clinical value of early partial symptomatic improvement in the prediction of response and remission during short-term treatment trials in 3369 subjects with bipolar I or II depression. J Affect Disord 2011; 130: 171–179

Kirchheirner J. CYP2D6 phenotype prediction from genotype: which system is the best? J Clin Pharmacol Ther 2008; 83: 225–227

Kirchheirner J, Nickchen K, Bauer M et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473

Kornhuber J, Quoq G, Dangond F et al. Therapeutic brain concentration of the NMDA receptor antagonist amantadine. Neuropsychopharmacology 1995; 34: 713–721

Kozor E, Parvec S, Minassian BA et al. How high can we go with phenytoin? Ther Drug Monit 2002; 24: 386–389

LeWitt PA, Jennings D, Kelly EL et al. Pharmacokinetic-pharmacodynamic crosstalk via reduction of two levodopa extension strategies. Mov Disord 2009; 24: 1319–1324

Lind AB, Reis M, Bengtsson F et al. Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour. Clin Pharmacokin 2009; 48: 63–70

Lindberger M, Lüth O, Johansson SE et al. Serum concentrations and effects of gabapentin and vigabatrin: observations from a dose titration study. Ther Drug Monit 2003; 25: 457–462

Lindemayer J. Long-acting injectable antipsychotics: focus on Olanzapine pamoate. Neuropsychiatr Dis Treat 2010; 6: 261–267

Hiemke C et al. AGNP Consensus Guidelines for ... Pharmacopsychiatry 2011; 44: 195–235

May TW, Rambeck B, Jürgens U. Serum concentrations of levetiracetam in epileptic patients: the influence of dose and co-medication. Ther Drug Monit 2003; 25: 690–699

May TW, Rambeck B, Jürgens U. Serum concentrations of topiramate in patients with epilepsy: influence of dose, age, and comedication. Ther Drug Monit 2002; 24: 366–374

May TW, Rambeck B, Neb R et al. Serum concentrations of pregabalin in patients with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit 2007; 29: 789–794

Medori R, Mannetta E, Grün G. Plasma antipsychotic concentra-
tion and receptor occupancy, with special focus on risperidone long-acting injectable. Eur Neuropsychopharmacol 2006; 16: 233–240

Meisenzahl EM, Christiansen JS, Bramer SL. Therapeutic drug monitoring and its metabolite desethylmirtazapine by HPLC with fluorescence detection. Ther Drug Monit 2004; 26: 277–283

Mihara K, Yasui-Furukori N, Kondo T et al. Relationship between plasma concentrations of trazodone and its active metabolite, metabolized by CYP2D6, and its clinical effect in depressed patients. Ther Drug Monit 2002; 24: 563–566

Mimaki T. Clinical pharmacology and therapeutic drug monitoring of zonisamide. Ther Drug Monit 1998; 20: 593–597

Hiemke C et al. AGNP Consensus Guidelines for... Pharmacopsychiatry 2011; 44: 195–235

Morris RG, Lee MY, Cleanthous A et al. Long-term follow-up using a higher target range for lamotrigine monitoring. Ther Drug Monit 2004; 26: 626–632

Nakamura K, Yokoi T, Inoue K et al. CYP2D6 is the principal cytochrome P450 responsible for the metabolism of the histamine H1 antagonist promethazine in human liver microsomes. Pharmacogenetics 1996; 6: 449–457

Olesen OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos 1997; 25: 740–744

Orsulak PJ. Therapeutic monitoring of antidepressant drugs: current methodology and applications. J Clin Psychiatry 1986; 47 (Suppl); 39–52

Orsulak PJ. Therapeutic monitoring of antidepressant drugs: guidelines updated. Ther Drug Monit 1989; 11: 497–507

Orsulak PJ, Schildkraut JF. Guidelines for therapeutic monitoring of tricyclic antidepressant plasma levels. Ther Drug Monit 1979; 1: 199–208

Hiemke C et al. AGNP Consensus Guidelines for... Pharmacopsychiatry 2011; 44: 195–235

Skogh E, Reis M, Dahl ML et al. Therapeutic drug monitoring on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther Drug Monit 2002; 24: 518–526

Smith RB, Krobath PD, Vanderluit JT et al. Pharmacokinetics and pharmacodynamics of alprazolam after oral and IV administration. Psychopharmacology (Berl) 1984; 84: 452–456

Smith SW. Chiral toxicology: it's the same thing...only different. Toxicol Sci 2009; 110: 4–30

Störmer E, von Molte K, Shaler RD et al. Metabolism of the antidepresant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 2008; 36: 1168–1175

Svirbely JR, Speicher CE. The importance of request and report forms in the interpretation of therapeutic drug monitoring data. Ther Drug Monit 1980; 2: 211–216

Tateishi T, Watanabe M, Kamai T et al. CYP3A is responsible for N-dealkylation of haloperidol and biperiden and oxidation of their reduced forms by human liver microsomes. Life Sci 2000; 67: 2913–2920

653 Titter K, Canal M, Déridet E et al. Determination of myocardin to plasm a concentration ratios of five antidepressiv e drugs: comparison with their ability to induce arrhythmia and sudden death in clinical practice. Toxicol Appl Pharmacol 2004; 199: 52–60

671 Van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE. Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 2005; 27: 478–483

678 Veefkind AH, Hoffsman PMJ, Hoencamp E. Venlafaxine serum levels and the CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–208

caused by ultra-rapid metabolism that is different from CYP2D6. Eur J Clin Pharmacol 1997; 52: 387–390

Wada RB, Christensen H, Rudberg I et al. Influence of comedication on serum concentrations of aripiprazole and dehydroaripiprazole. Ther Drug Monit 2009; 31: 233–238

Wen B, Zhou M. Metabolic activation of the phenothiazine antipsychotics chlorpromazine and thioridazine to electrophilic iminoquinone species in human liver microsomes and recombinant P450s. Chem Biol Interact 2009; 181: 220–226

Zernig G, Lechner T, Kramer-Reinstadler K et al. What the clinician still has to be reminded of. Ther Drug Monit 2004; 26: 582

Hiemke C et al. AGNP Consensus Guidelines for... Pharmacopsychiatry 2011; 44: 195–235
749 Zullino DF, Delessert D, Eap CB et al. Tobacco and cannabis smoking cessation can lead to intoxication with clozapine or olanzapine. Int Clin Psychopharmacol 2002; 17: 141–143