Klinische Neurophysiologie 2012; 43(01): 16-21
DOI: 10.1055/s-0031-1286264
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Central Pattern Generators und ihre Bedeutung für die fötale Motorik

Central Pattern Generators and Their Significance for the Foetal Motor Function
C. Einspieler
1   Institut für Physiologie, Zentrum für Physiologische Medizin, Medizinische Universität Graz, Österreich
,
P. B. Marschik
1   Institut für Physiologie, Zentrum für Physiologische Medizin, Medizinische Universität Graz, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2011 (online)

Zusammenfassung

Auch wenn die Existenz der Central Pattern Generators (CPGs) schon seit Ende des 19. Jahrhunderts bekannt ist, ist man noch immer weit davon entfernt, die präzise Funktion dieser faszinierenden neuronalen Netzwerke zu verstehen. CPGs generieren endogen – in der Abwesenheit oszillatorischer Inputs – rhythmische Bewegungsmuster. Einige CPGs sind kontinuierlich aktiv, wie zum Beispiel der CPG für den Atemrhythmus; andere CPGs (wie jene für Lokomotion oder rhythmische Aktivitäten der Nahrungsaufnahme) müssen erst neuronal und/oder hormonell getriggert werden. Damit rhythmisches Verhalten an die Umgebungsbedingungen angepasst werden kann, bedarf es modulierender Inputs von supraspinalen Strukturen und der Peripherie. In der frühesten Entwicklung erzeugen die noch unreifen CPGs spontane embryonale/fötale Bewegungen, die ihrerseits die Reifung der sich entwickelnden Strukturen gewährleisten. Die Beurteilung früher fötaler und neonataler Bewegungen ist von klinischer Relevanz, da Hirnläsionen den modulierenden Input auf den CPG reduzieren. Die daraus resultierende Monotonie der Bewegungen ist ein zuverlässiges Zeichen neurologischer Beeinträchtigung.

Abstract

Although evidence for the existence of endogenously generated motor activity goes back to experiments conducted more than a century ago, a lot remains to be learnt about the fascinating network that is the central pattern generator (CPG). CPGs are neuronal circuits that can produce rhythmic motor patterns in the absence of oscillatory input. Some CPGs operate continuously (e. g., breathing movements); others are activated to perform specific behavioural tasks (e. g., locomotion). In order to lend flexibility to the motor output, supraspinal projections activate, inhibit, and, most of all, modulate the CPG activity, as does the sensory feedback. Embryonic and foetal motor patterns have all the characteristics of being endogenously generated. At no other stage of development is the neural structure so closely related to its own function. It only takes a few neurons to generate basic movements, which are, in turn, necessary for further development of the structure. Apart from the general interest in the evolution of early motor activity, the observation and assessment of spontaneous foetal and neonatal motility has also clinical implications, since a reduced CPG modulation results in less variable movements and indicates foetal or neonatal compromise.

 
  • Literatur

  • 1 Smith JC, Ellenberger HH, Ballanyi K et al. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 1991; 254: 726-729
  • 2 Marder E, Bucher D, Schulz DJ et al. Invertebrate central pattern generation moves along. Curr Biol 2005; 15: R685-R699
  • 3 Guertin PA, Steuer I. Key central pattern generators of the spinal cord. J Neurosci Res 2009; 87: 2399-2405
  • 4 Bass AH, Remage-Healey L. Central pattern generators for social vocalization: androgen-dependent neurophysiological mechanisms. Horm Behav 2008; 53: 659-672
  • 5 Barlow SM, Lund JP, Estep M et al. Central pattern generators for orofacial movements and speech. In: Brudzynski SM. eds. Handbook of Mammalian Vocalization. Oxford: Academic Press; 2009: 351-370
  • 6 Dickinson PS. Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol 2006; 16: 604-614
  • 7 Guertin PA. The mammalian central pattern generator for locomotion. Brain Res Rev 2009; 62: 45-56
  • 8 Marder E, Calabrese RL. Principles of rhythmic motor pattern generation. Physiol Rev 1996; 76: 687-717
  • 9 Marder A, Bucher D. Central pattern generators and the control of rhythmic movements. Curr Biol 2001; 11: R986-R996
  • 10 Wang XJ, Rinzel J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp 1992; 4: 84-97
  • 11 Wilson D. The central nervous control of locust flight. J Exp Biol 1961; 38: 471-490
  • 12 von Holst E. Die relative Koordination als Phänomen und Methode zentralnervöser Funktionsanalyse. In: Asher L, Spiro K. eds. ­Ergebnisse der Physiologie. München: Bergmann; 1939: 228-306
  • 13 Hultborn H, Nielsen JB. Spinal control of locomotion – from cat to man. Acta Physiol 2007; 189: 111-121
  • 14 Sherrington CS. Flexion reflex of the limb, crossed extension reflex, and reflex stepping and standing. J Physiol 1910; 40: 28-121
  • 15 Graham Brown T. On the nature of the fundamental activity of the nervous centres, together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 1914; 48: 18-46
  • 16 Jankowska E, Jukes MG, Lund S et al. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurons of flexors and extensors. Acta Physiol Scand 1967; 70: 369-388
  • 17 Grillner S, Zangger P. Locomotor movements generated by the deafferented spinal cord. Acta Physiol Scand 1974; 91: 38A-39A
  • 18 Preyer WT. Spezielle Physiologie des Embryo. Leipzig: Grieben; 1885
  • 19 Einspieler C, Prayer D, Prechtl HFR. Fetal Behaviour: A Neurodevelopmental Approach. London: MacKeith Press, distributed by ­Wiley; 2011
  • 20 Hanson MG, Landmesser LT. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 2004; 43: 687-701
  • 21 Marder E, Rehm KJ. Development of central pattern generating ­circuits. Curr Opin Neurobiol 2005; 15: 86-93
  • 22 Hanson MG, Landmesser LT. Increasing the frequency of spontaneous rhythmic activity disrupt pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons. J Neurosci 2006; 26: 12769-12780
  • 23 Oppenheim RW, Calderó J, Cuitat D et al. Rescue of developing spinal motoneurons from programmes cell death by the GABAA agonist muscimol acts by blockade of neuromuscular activity and increased in­tramuscular nerve branching. Mol Cell Neurosci 2003; 22: 331-343
  • 24 Benoit P, Changeux JP. Consequences of tenotomy on the evolution of multi-innervation in developing rat soleus muscle. Brain Res 1975; 99: 354-358
  • 25 O’Brien RAD, Ôstberg AJC, Vrbová G. Observations on the elimination of polyneural innervation in developing mammalian skeletal muscle. J Physiol 1978; 282: 571-582
  • 26 Borodinsky LN, Root CM, Cronin JA et al. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 2004; 429: 523-530
  • 27 Inanlou MR, Baguma-Nibasheka M, Kablar B. The role of fetal breathing-like movements in lung organogenesis. Histol Histopathol 2005; 20: 1261-1266
  • 28 Grassi R, Farina R, Floriani I et al. Assessment of fetal swallowing with gray-scale and color Doppler sonography. Am J Radiol 2005; 185: 1322-1327
  • 29 Einspieler C, Prechtl HFR. Prechtl’s assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system. Ment Retard Dev Disabil Res Rev 2005; 11: 61-67
  • 30 Einspieler C, Marschik PB, Prechtl HFR. Human motor behaviour. Prenatal origin and early postnatal development. Z Psychol 2008; 216: 148-154
  • 31 Visser GHA, Laurini RN, de Vries JIP et al. Abnormal motor behaviour in anencephalic fetuses. Early Hum Dev 1985; 12: 173-182
  • 32 Ferrari F, Prechtl HFR, Cioni G et al. Posture, spontaneous movements, and behavioural state organisation in infants affected by brain malformation. Early Hum Dev 1997; 50: 87-113
  • 33 Prechtl HFR, Einspieler C. Is neurological assessment of the fetus possible?. Eur J Obstet Gynecol Reprod Biol 1997; 75: 81-84