Semin Musculoskelet Radiol 2011; 15(4): 309-319
DOI: 10.1055/s-0031-1286013
© Thieme Medical Publishers

Managing Postoperative Artifacts on Computed Tomography and Magnetic Resonance Imaging

Kenneth A. Buckwalter1 , Chen Lin1 , Jason M. Ford1
  • 1Department of Radiology, Indiana University Hospital, Indianapolis, Indiana
Further Information

Publication History

Publication Date:
16 September 2011 (online)

ABSTRACT

Orthopedic hardware should not be considered a contraindication to computed tomography (CT) or magnetic resonance (MR) imaging. The hardware alloy, the geometry of the hardware, and the orientation of the hardware all affect the magnitude of image artifacts. For commonly encountered alloys, the severity of image artifacts is similar for CT and MR. Cobalt chrome or stainless steel hardware produces the most artifacts; titanium hardware produces the least. In general, image artifacts are most severe adjacent to the hardware. CT image artifacts are related to incomplete X-ray projection data resulting in streaks. These can be mitigated by increasing scan technique and using a smoother reconstruction filter. Hardware with a rectangular cross-sectional shape such as a fixation plate will cause more artifacts than a radially symmetrical device such as an intramedullary nail. Image artifacts at MR are caused by the hardware magnetic susceptibility and the induction of eddy currents within the metal. A turbo spin-echo sequence yields the best results. The use of larger image matrices, thinner slices, and a wide receiver bandwidth are recommended parameter adjustments when imaging patients with hardware. This article discusses how hardware-related artifacts can be minimized by altering scan technique and image reconstruction.

REFERENCES

  • 1 van der Bruggen W, Bleeker-Rovers C P, Boerman O C, Gotthardt M, Oyen W J. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review.  Semin Nucl Med. 2010;  40 (1) 3-15
  • 2 Weiss D B, Jacobson J A, Karunakar M A. The use of ultrasound in evaluating orthopaedic trauma patients.  J Am Acad Orthop Surg. 2005;  13 (8) 525-533
  • 3 Utrup S J, Brown K M. Quantification and elimination of windmill artifacts in multi-slice CT. In: Hsieh J, Samei E, eds. Medical Imaging 2008: Physics of Medical Imaging. Proceedings of the Society for Optics and Photonics. Vol 6913. Bellingham, WA: SPIE; 691338-12
  • 4 Wang J C, Yu W D, Sandhu H S, Tam V, Delamarter R B. A comparison of magnetic resonance and computed tomographic image quality after the implantation of tantalum and titanium spinal instrumentation.  Spine. 1998;  23 (15) 1684-1688
  • 5 Buckwalter K A. Optimizing imaging techniques in the postoperative patient.  Semin Musculoskelet Radiol. 2007;  11 (3) 261-272
  • 6 White L M, Buckwalter K A. Technical considerations: CT and MR imaging in the postoperative orthopedic patient.  Semin Musculoskelet Radiol. 2002;  6 (1) 5-17
  • 7 Nickoloff E L, Alderson P O. Radiation exposures to patients from CT: reality, public perception, and policy.  AJR Am J Roentgenol. 2001;  177 (2) 285-287
  • 8 Biswas D, Bible J E, Bohan M, Simpson A K, Whang P G, Grauer J N. Radiation exposure from musculoskeletal computerized tomographic scans.  J Bone Joint Surg Am. 2009;  91 (8) 1882-1889
  • 9 Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H. Performance evaluation of a 64-slice CT system with z-flying focal spot.  Rofo. 2004;  176 (12) 1803-1810
  • 10 Buckwalter K A, Parr J A, Choplin R H, Capello W N. Multichannel CT imaging of orthopedic hardware and implants.  Semin Musculoskelet Radiol. 2006;  10 (1) 86-97
  • 11 Mahnken A H, Raupach R, Wildberger J E et al.. A new algorithm for metal artifact reduction in computed tomography: in vitro and in vivo evaluation after total hip replacement.  Invest Radiol. 2003;  38 (12) 769-775
  • 12 Liu P T, Pavlicek W P, Peter M B, Spangehl M J, Roberts C C, Paden R G. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress.  Skeletal Radiol. 2009;  38 (8) 797-802
  • 13 Raphael B, Haims A H, Wu J S, Katz L D, White L M, Lynch K. MRI comparison of periprosthetic structures around zirconium knee prostheses and cobalt chrome prostheses.  AJR Am J Roentgenol. 2006;  186 (6) 1771-1777
  • 14 Lee M J, Kim S, Lee S A et al.. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT.  Radiographics. 2007;  27 (3) 791-803
  • 15 Lin C, Dale B M, Friggle L et al.. Quantitative evaluation of metal artifact with new turbo spin echo imaging techniques. Paper presented at: 17th Scientific Meeting of International Society for Magnetic Resonance in Medicine; April 2009; Honolulu, HI
  • 16 Dixon W T. Simple proton spectroscopic imaging.  Radiology. 1984;  153 (1) 189-194

Kenneth A BuckwalterM.D. 

Department of Radiology, Indiana University Hospital

550 N. University Blvd., Rm. 0663, Indianapolis, IN 46202

Email: kbuckwal@iupui.edu

    >