Introduction

Diabetes mellitus (DM), the world’s most common metabolic disorder, results from a defect in insulin secretion, insulin action, or both [1]. It is projected that the global prevalence of diabetes is escalating. At least 250 million individuals worldwide suffer from diabetes, and this number will double by 2030. Increases in complications will undoubtedly follow increasing pervasiveness of diabetes [2].

The regional prevalence of diabetes in MENA (Middle Eastern and North Africa) countries is 7.7% [3]. Standing at 10.1%, Jordan has the ninth highest incidence of diabetes. Several national surveys indicated that the prevalence of type 2 diabetes and impaired fasting glycemia is in an unprecedented increase with an epidemiological transition in Jordan [4–6]. More than 80% of diabetes deaths occur in low- and middle-income countries. Endocrine, nutritional, and metabolic diseases represent 7.9% of deaths in Jordan [7–8]. Located in the Middle East, Jordan covers 92,300 km² with high geographical and ecological diversity. Its varied topography and climate result in the junction of four biogeographical regions Fig. 15, and these crossroads engender the country with substantial biodiversity that is at large understudied or, even worse, left unexplored [9].

The Mediterranean region provides the vast majority of the recorded 2500 wild plant species, including medicinal, poisonous, edible, and ornamental ones. There are more than 140 wild edible plants listed such as *Rumex crispus*, *R. vesicarius*, *Gundelia tournefortii*, *Origanum syriacum*, *Foeniculum vulgare*, and *Chicorium pumilum*. Some of these edible and culinary plants are used by local communities for generations for their medicinal value [10–12].

In Jordan, where traditional medicine plays a partial role in imparting the primary health care, vegetables, culinary herbs, and medicinal plants are among the main choices in the management of diabetes [13,14]. However, it is officially neither integrated in the health care system nor recognized in national policies of the country. The objective of this mini review is to underline the ethnopharmacological practices related to 30 selected ethnobotanicals with claimed antidiabetic properties in light of their comprehensive scientific evaluation.
Discussion

Surveys based on interviews with herbalists and search engines indicated that in the Jordanian traditional medicine almost 70 plant species belonging to 38 families were consumed by diabetic patients. The majority of the used plants are native to Jordan while others like Zingiber officinalis, Terminalia chebula, or Emblica officinalis are recognized as plants of nonindigenous origin [13, 15–17]. Reports on the concomitant use of plants accompanying the orthodox therapy are limited. Primarily, interviews with diabetes patients in specialized health centers of Jordan further signified a more diversified list of selected plants [14, 18]. The reported plants were: Camellia sinensis, Pimpinella anisum, Zingiber officinale, Matricaria chamomilla, Salvia triloba, Trigonella foenum-graecum, Nigella sativa, Lupinus albus, Teucrium polium, Allium sativum, Cinnamomum zeylanicum, and Olea europea.

Locally, a preliminary screening of the critical pharmacological appraisal of the traditionally utilized botanicals was performed. It demonstrated that reports on diabetes interventional phytotherapies are scarce. Gharabeh et al. [19] investigated the hypoglycemic effects of Teucrium polium in normal and STZ-diabetic rats. Hamdan and Afifi [20], Afifi et al. [21], and Kasabri et al. [22, 23] undertook a comprehensive and complementary in vitro and in vivo testing for a vast array of indigenously recruited herbs, partially consumed as integral to the diet of the traditional communities; Achillea santolina, Eryngium creticum, Geranium graveolens, Paronychia argentea, Pistacia atlantica, Rheum ribes, Sarcopoterium spinosum, T. polium, and Varthemia iphionoides have been identified as antidiabetic phytomedicines. This line of research findings could link and rationalize the ethnopharmacological use with new approaches in the prevention/modulation of postprandial hyperglycemia emerging from the therapeutic use of α-amylase and α-glucosidase inhibitors. Also, Al-Mustafa and Al-Thunibat [24] investigated the antioxidative potentialities of an extensive list of Jordanian antidiabetic phytomedicines. Moreover, pancreatic mechanistic studies were reported for the hypoglycemic bioactivities of cinchonain I from Eriobotrya japonica [25] and Ferula asafoetida [26]. Additionally, the hypoglycemic effects of Ballota nigra [27] and Artemisia sieberi [28] were evidenced in alloxan–diabetic rats.

Comparable to conventional diabetes pharmacotherapeutics, the significant efficacy of hypoglycemic herbs is achieved by increasing insulin secretion, enhancing glucose uptake by adipose and muscle tissues, inhibiting glucose absorption from intestine and inhibiting glucose production from hepatocytes [29–31]. Certain herbs may ameliorate overt hyperglycemia substantially in clinical trials with well characterized action mechanisms [32, 33]; their test results, however, are subject to several factors. Firstly, each herb contains multiple compounds, only a few of which may be therapeutically effective either alone or synergistically [34]. Secondly, different parts of an herb have different ingredient profiles. Thirdly, different extraction methods may yield different active ingredients [35]. Most recently, the antidiabetic activity of several flavonoids, polyphenols, terpenoids, coumarins and some alkaloids have been reviewed [36–39]. The reported secondary metabolites of the selected 30 plants are listed in Table 1. Especially important in the present review, flavonoids are the major class of secondary metabolites detected in most of the plants. Moreover, terpenoids have been reported in the discussed plant species with hypoglycemic activities [29, 30].

Locally, one of the common practices is to assign certain species of a given genus a single common Arabic name with the expectation that all of them will perform ethnomedically equally. This unjustifiable practice is based on species availability. In application, and despite scientific invalidity, the three Artemisia, both Cichorium spp., and the two Crataegus species have been the subject of such inappropriate convenience of designation. Plants compiled in Table 1, demonstrating antidiabetic pharmacological activities, can be subgrouped as follows:

1. Spices: (M. spicata, O. syriacum, L. nobilis, C. sativum, C. cymum, C. spinosa). Spices do not only improve the taste of the foods but do also contribute to the well-being of humans. Influence of the spices on the body metabolism and on the endocrine system has gained importance in the recent years. Numerous spices have been evaluated in animal experiments as well as clinical studies, and evidence has been obtained for their antidiabetic potential [40–43].

2. Vegetables and fruits: (Cichorium intybus, C. pumilum, Opuntia ficus indica, Allium cepa Portulaca oleracea, Crataegus aronia, C. azarolus, Citrus limon, C. paradisi). Since appropriate diet, exercise, and weight reduction are essential in controlling the blood sugar, antidiabetic activities of many edible fruits and vegetables – in the form of aqueous and alcohol extracts – have been tested in diabetes animal models. Furthermore, clinical evidence for the antidiabetic activity is reported for two vegetables, namely for C. intybus and A. cepa. A. cepa exhibited hypoglycemic effects in type 1 and type 2 diabetic patients (Table 1). Exceptionally, C. intybus, possessing multiple action mechanisms in controlling the blood glucose level such as alpha amylase inhibitory activity, appetite regulation, and increasing insulin secretion (Table 1), has hypoglycemic activity in different animal models and clinically evidenced benefits in the reduction of diabetes risk (Table 1).

3. Medicinal herbs and nonedible parts of fruits: (Artemisia herba-alba, A. judaica, A. vulgaris, Citrullus colocynthis, Aloe vera, Eucalyptus globules, Plantago major, P. ovata, Ruta chalepensis, Eryngium creticum and C. sinensis, Ceratonia siliqua, Juglans regia, M. spicata, O. syriacum, L. nobilis, C. sativum, C. cymum). Several studies indicated the hypoglycemic benefits of flavonoids such as hesperidin, quercetin, luteolin, narirutin, and rutin in STZ-diabetic rats, but A. vulgaris used locally for its antidiabetic activity has not been appraised pharmacologically. The remaining medicinal herbs, with the exception of R. chalepensis, have established antidiabetic activities. Richness in flavonoids, such as rutin, may raise plausible anticipation for R. chalepensis antidiabetic potentiality (Table 1). Several studies indicated the hypoglycemic benefits of flavonoids such as hesperidin, quercetin, luteolin, narirutin, and rutin in STZ-diabetic rats [44–48]. Leaf decoctions of common fruit trees – C. siliqua, J. regia, and M. nigra – and the peels of C. sinensis are praised throughout the country for their antidiabetic activities. These substantial efficacies have been clearly verified. Moreover, the antidiabetic efficiency of C. siliqua leaf extracts has been confirmed in type 2 diabetic patients (Table 1).

Conclusion

Based on hundreds of years of belief and observation, a marked number of plant species are used by the inhabitants of Jordan for the treatment of diabetes. The traditional knowledge of plants...
<table>
<thead>
<tr>
<th>No.</th>
<th>Family</th>
<th>Species</th>
<th>Reported phytoconstituents</th>
<th>Reported antidiabetic efficacy and/or action mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asteraceae</td>
<td>Artemisia herba-alba Asso. (syn.: A. inculta)</td>
<td>C. trans-thujone, 1,8-cineole, camphor, chrysanthene glycosides, trans-sabinyl acetate, trans-pinocarveol, and borneol</td>
<td>Significant and time-dependent hypoglycemic effect in normoglycemic and alloxan diabetic rabbits [53]. Preventive and antihyperglycemic effect in high-fat diet diabetes mice [54, 55].</td>
</tr>
<tr>
<td>2</td>
<td>Asteraceae</td>
<td>A. judaica L. (infusion of flowering tops)</td>
<td>C. trans-thujone, cis-thujone, chrysanthene glycosides, 1,8-cineole, sabine, β-pinene, Artemisia ketone, caryophyllene, oxygenated monoterpenes, sesquiterpenes</td>
<td>Antidietic effect in STZ-diabetic rats via acting as an insulin-mimetic reversing the changes in the enzyme activities of cytochrome P-450 (2E1, 2B, and 2C) on androst-4-ene-3,17-dione metabolism [61].</td>
</tr>
<tr>
<td>3</td>
<td>Asteraceae</td>
<td>A. vulgaris L. (infusion of flowering head)</td>
<td>C. trans-thujone, cis-thujone, chrysanthene glycosides, 1,8-cineole, sabine, β-pinene, Artemisia ketone, caryophyllene, oxygenated monoterpenes, sesquiterpenes</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>Asteraceae</td>
<td>Cichorium intybus L. (decoction of flowers, roots)</td>
<td>C. sesquiterpene lactones: cephilin, luteolin, quercetin, apigenine, aucubin, sesquiterpene lactones, and a novel aromatic compound</td>
<td>Antihyperglycemic effect in alloxan-induced diabetes mice [78] and clinically proven reduction on diabetes risk [79], which can be explained by a reduction in intestinal absorption of glucose [80]. Significant increases in catalytic concentration of glutathione S-transferases in the liver of diabetic NOD mice [81]. Its dietary insulin-type fructans promote secretion of endogenous gastrointestinal peptides involved in appetite regulation [82] and via reduction in the hepatic Glc-6-pase activity thus decreasing hepatic glucose production, with no possibility of inducing insulin secretion from pancreatic beta-cells [83], also through adipogenesis inhibition and PPARgamma upregulation, inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers [77, 84], α-Glucosidase inhibition [85]. Insulin-sensitizing and insulin-secretory principles [86]. Neuroprotection by stimulating AChE activity in brains of alloxan diabetic rats [87].</td>
</tr>
<tr>
<td>5</td>
<td>Asteraceae</td>
<td>Cichorium pumilium L. (decoction of aerial parts)</td>
<td>C. sesquiterpene lactones: cephilin, luteolin, quercetin, apigenine, aucubin, sesquiterpene lactones</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>Cactaceae</td>
<td>Opuntia ficus-indica (L.) Mill. (edible fruits)</td>
<td>C. sesquiterpene lactones: cephilin, luteolin, quercetin, apigenine, aucubin, sesquiterpene lactones, and a novel aromatic compound</td>
<td>Hypoglycemic effects [94].</td>
</tr>
<tr>
<td>7</td>
<td>Capparaceae</td>
<td>Capparis spinosa L. (decoction of flowers, fruits)</td>
<td>C. saccharides and glycosides, flavonoids, alkaloids, terpenoids and volatile oils, fatty acids and steroids</td>
<td>Potent antihyperglycemic activity in STZ rats without affecting basal plasma insulin concentrations [99]. Hypoglycemic activity [95].</td>
</tr>
<tr>
<td>8</td>
<td>Cucurbitaceae</td>
<td>Citrullus colocynthis L. (Schrad) (infusion of dry fruits, seeds)</td>
<td>C. sesquiterpene lactones: cephilin, luteolin, quercetin, apigenine, aucubin, sesquiterpene lactones, and a novel aromatic compound</td>
<td>Hypoglycemic and antihyperglycemic effects in normal and alloxan diabetic rabbits [101] and STZ diabetic rats [103] by partly preserving or restoring pancreatic beta-cell mass [104] and insulinotropic effect [105]. Clinical beneficial effect on improving the glycemic profile without severe adverse effects in type 2 diabetic patients [106].</td>
</tr>
</tbody>
</table>

Table 1 Selected plants indigenous to Jordan used for the treatment of diabetes in folk medicine.
Table 1 Selected plants indigenous to Jordan used for the treatment of diabetes in folk medicine. (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Family</th>
<th>Species</th>
<th>Reported phytoconstituents</th>
<th>Reported antidiabetic efficacy and/or action mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Fabaceae</td>
<td>Ceratonia siliqua L.</td>
<td>Flavonoids: mainly myricetin [108], Phenolics: mainly gallocateins and proanthocyanidins, tannins, flavonol-glycosides, and traces of isoflavonoids [109–112], Tannins [113]</td>
<td>Significantly decreased the glucose response to and glycemic index of fibers-enriched food in type 2 diabetic subjects. It also tended to decrease their insulinemic response and insulinemic index [114]. Increases total and acylated plasma ghrelin accompanied by enhanced lipid metabolism, thus suggesting higher lipid utilization and suppressed lipolysis, without affecting fasting concentrations of glucose, TAG, total ghrelin, NEFA, insulin, and leptin [115]</td>
</tr>
<tr>
<td>10</td>
<td>Gramineae</td>
<td>Avena sativa L.</td>
<td>Beta-glucan, minerals, B complex vitamins, protein, fat, minerals [116], Avenanthramide [117]</td>
<td>Improving glycemic, insulimimc, and lipidemic responses [118]. Oatmeal test seemed to be a good, noninvasive screening test in diabetic gastropathy in type 1 diabetes, but has no diagnostic value in type 2 diabetes [119]. Depression of the glycemic index by high levels of beta-glucan fiber making it a useful functional food component for reducing postprandial glycemia [120, 121]. Significantly improved whole-body insulin sensitivity [122, 123] induced changes of postprandial peptide YY and ghrelin responses [124] and increased postprandial cholecystokinin levels [125]. Dihydro-avenanthramide D protects pancreatic beta-cells from cytokine and STZ toxicity [117]</td>
</tr>
<tr>
<td>11</td>
<td>Juglandaceae</td>
<td>Juglans regia L.</td>
<td>Ellagic acid [126], Hydrolysable tannins [127], Daryl-Heptanoids [128]. Unsaturated fatty acids, tocopherols, phospholipids, sphingolipids, sterols, hydrocarbons, and volatile compounds, phenolic compounds [129]</td>
<td>Dramatic hypoglycemic effect in experimental diabetes rats; where density of islets in pancreatic tissue, percent of beta cells, and islets size increased significantly thereby signifying regeneration of islets or beta cells [130–132]; thus, recommended in prevention of DM and its late complications [133]</td>
</tr>
<tr>
<td>12</td>
<td>Labiatae</td>
<td>Mentha spicata L.</td>
<td>Protocatechualdehyde, protocatechuic acid, chrosoerol, 5,6-dihydroxy-2,3,4-tetramethoxyflavone, nodiflorein [134]. Two lignans named spicatolignan A and spicatolignan B [135]. Carvone; monoterpen ketone [136] and menthone [137]; flavonoids [138]; piperitenone oxide 1,8-cineole [139]</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>Labiatae</td>
<td>Origanum syriacum L.</td>
<td>Monoterpen glucosides [140], oxygenated monoterpenes and sesquiterpenes [141]. Polar phenolic analytes; hydroxyl-benzoates, hydroxy-l-cinnamates, and flavonoids [142]. Carvacrol, thymol, and thymoquinone [143]. Rosmarinic, oleicolic, and ursolic acids [144], y-terpinene and p-cymene [145]</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>Liliaceae</td>
<td>Allium cepa L.</td>
<td>Flavonoid glycosides [150]; S-alk(en)yl cysteine sulfoxide metabolites [151, 152]; S-allylcysteine sulfoxide, S-methylcysteine sulfoxide, and diallyl trisulfide [153]; quercetin [154]; onionin A [155]</td>
<td>Antidiabetic [41] via stimulating effects on glucose utilization and partly dependent on the stimulation of insulin secretions [156]. Hypoglycemic effect in STZ-diabetic rats coupled to decrease in the total serum lipid, triglyceride, and atherogenic index and increase in HDL-cholesterol/total cholesterol ratio, and reducing renal oxidative stress [157]. Clinical hypoglycemic effects in type 1 and type 2 diabetic patients [158]</td>
</tr>
<tr>
<td>16</td>
<td>Liliaceae</td>
<td>Aloe vera L. (infusion of leaves, juice [15])</td>
<td>Cinnamoyl, p-coumaroyl, feruloyl, caffeoyl alanin [159]. Phenols, flavonoids, ascorbic acid, β-carotene and α-tocopherol [160]. Mannose polymers with some glucose and other sugars; mainly acemannan, glycoproteins, enzymes, amino acids, vitamins, and minerals [161]. Anthraquinones: aloesin, aloes-emodin, and barbaloin, N-terminal octapeptide derived from verectin [162] and triglucoylated naphthalene glycoside [163]</td>
<td>Hypoglycemic or antidiabetic effects [164] thereby indicated for the treatment of diabetes and dyslipidemia [165]</td>
</tr>
<tr>
<td>No.</td>
<td>– Species –</td>
<td>Preparation Method</td>
<td>Reported phytoconstituents</td>
<td>Reported antidiabetic efficacy and/or action mechanism</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Moraceae</td>
<td>Morus nigra L. (decoction of leaves [107])</td>
<td>Anthocyanins [166], Olcanolic acid, apigenin, cyclocommunol, morusin, cyclocumrin, kuwanon C, daucosterol [167]. Essential minerals, nutritive components, total phenols, and alkaloid contents [168]. A new 2-arylbenzofuran derivative, monogrol D, G, and H along with nororocarpin, dihydroalphaemferol, albanin A, albanin E, moracin M, and albafuran C [169].</td>
<td>Antihyperglycemic propensity via significant increases in catalytic concentration of glutathione S-transferases in the liver of diabetic NOD mice [170, 171]</td>
</tr>
<tr>
<td>18</td>
<td>Myrtaceae</td>
<td>Eucalyptus globulus Labill. (decoction of leaves, oil [18])</td>
<td>Heteroxylan composed of galactosyl, 4-O-methylglucuronosyl and xylosyl residues [172]. Ellagic acid derivatives; 3-O-methyllyllic acid 4′-O-αL-2′-O-acetyl-rhamnopranoside, 3-O-methyl-ellagic acid 4′-O-α-L-rhamnopranoside, ellagic acid, and 3-O-methyllyllic acid [173]. β-sitosterol, betulinic acid, stigmasterol, euscaphic acid, 2α-hydroxybutylinic acid, macrocarpal B, macrocarpal A, oleanolic acid, 3,4,3′-O-trimethylyllic acid, 3,5-methylyllic acid 4′-O-(2′-O-acetyl)-α-L-rhamnopranoside, camaldulenside (cyeplocarpin C, 3-O-methyllyllic acid 4′-O-α-L-rhamnopranoside, 3-O-methyllyllic acid, ellagic acid, and gallic acid [174]) and cypellocarpa C [175].</td>
<td>In vitro stepwise enhancement of insulin secretion from the clonal pancreatic beta-cell line (BRIN-BD11) and enhancement of 2-deoxy-glucose transport, glucose oxidation, and incorporation of glucose into glycogen in mouse abdominal muscle [176, 177]. Antihyperglycemic action not exerted via the stimulation of insulin secretion but via enhancement of peripheral glucose uptake, exerting an antioxidative activity demonstrated by the increase of catalase, superoxide-dismutase, and glutathione-peroxidase activities in the liver and kidney, and a lowering of lipids peroxidation level in these organs [178]. Significantly improved the hyperglycemia, polydipsia, polyphagia, and also compensated weight loss of diabetic rats, in addition to treatment of candidiasis in normal and diabetic rats [179]. Noticeably, dose-dependent amelioration of diabetic states by partial restoration of pancreatic beta cells and repair of STZ-induced damage in rats [180]</td>
</tr>
<tr>
<td>19</td>
<td>Plantaginaceae</td>
<td>Plantago major L. (decoction of seeds [69])</td>
<td>Ursolic acid [181], Polysaccharides, lipids, caffeic acid derivatives, trigonelline, tamoxifen, benzodiazepines, alkaloids [182], Phenolic glycosides [183]. Antioxidative flavonoids [184]</td>
<td>Significant antihyperglycemic effect in experimental diabetic rats [185, 186]</td>
</tr>
<tr>
<td>20</td>
<td>Plantaginaceae</td>
<td>Potentispermum siamoense L. (decoction of leaves, fruits [69])</td>
<td>Neutral arabinosylan [187], Phytosterols; β-sitosterol and stigmasterol [188], Saponin [189]</td>
<td>Fasting blood glucose and HbA1c showed a significant reduction, whereas HDL-Cholesterol increased significantly. LDL/HDL ratio was significantly decreased in diabetic outpatients [190]</td>
</tr>
<tr>
<td>22</td>
<td>Rosaceae</td>
<td>Cruasinesis barbata L. Bosc. ex DC (decoction of flowers, fruits [196])</td>
<td>Phenolics and flavonoids [197]</td>
<td>Hypoglycemic and antiperoxidative bioactivities in experimental diabetic rats [198]</td>
</tr>
<tr>
<td>23</td>
<td>Rosaceae</td>
<td>C. azarolus L. (decoction of flowers, fruits [107])</td>
<td>Polyphenols [199]</td>
<td>None</td>
</tr>
</tbody>
</table>
Table 1 Selected plants indigenous to Jordan used for the treatment of diabetes in folk medicine.

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Reported phytocconstituents</th>
<th>Reported antidiabetic efficacy and/or action mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Rutaceae C. sinensis (L.) Osbeck (decoction of peels [69])</td>
<td>Phenolic: chlorogenic acid, luteolin, myricitin, naringenin, p-coumaric acid, and quercitin; and flavonoids – mainly hesperidone [215, 216], Flavanones [217]. Cyclic monoterpene, DL-limonene [218]. Ascorbic acid [219]</td>
<td>Maximum glucose lowering and antiperoxidative activities in alloxan diabetic mice [220]. Antihyperglycemic, hypoglycemic, and insulin stimulatory properties, suggesting its potential to ameliorate both hyperthyroidism and diabetes mellitus [221]. Significant decrease in fasting glucose levels in the overweight treatment group of osteoarthritis patients [222]. Lack of α-glucosidase inhibitory effects [223]. Selective inhibition of aldose reductase [224] and reduction of advanced glycation end products and H2O2 induced oxidative stress in human adipocytes [225]</td>
</tr>
<tr>
<td>27</td>
<td>Rutaceae Ruta chalepensis L. (decoction of leaves, buds, roots [49])</td>
<td>Alkaloids, flavonoids, coumarins, tannins, volatile oil, sterols and/or triterpenes [226], and rutin, a flavone glycoside [227]</td>
<td>None</td>
</tr>
<tr>
<td>28</td>
<td>Umbelliferae Coriandrum sativum L. (decoction of seeds [18, 56])</td>
<td>Polycytylenes [228]. 1-β-D-glucopyranoside, 3-β-D-glucopyranoside, 4-β-D-glucopyranoside, 1-β-D-fructofuranoside, 3-β-D-fructofuranoside, 4-β-D-fructofuranose, 1-β-D-(6-O-4-hydroxymethyl)-glucopyranoside, and 1-β-D-(6-O-4-methoxybenzyl)-glucopyranoside of 2-C-methyl-D-erythritol [229]. Monoterpenoids, glycosides, monoterpenoid glucoside sulfates, and aromatic compound glycosides [230]</td>
<td>Antihyperglycemic, insulin-releasing, and insulin-like activity [231, 232]</td>
</tr>
</tbody>
</table>

References

7. World Health Organization. WHO Publications 2011: Fact Sheet No 312

Supporting information

In Table 1S of the Supporting information, the up-to-date reported pharmacological activities of the selected medicinal plants with claimed antidiabetic propensities are discussed. On the other hand, Table 1 includes the reported antidiabetic efficacy and/or action mechanism of the same selection of medicinal plants.

Conflict of Interest

The authors declare none.

64 Tigno XT, Gamila E. In vivo microvascular actions of Artemisia vulgaris L. in a model of ischemia-reperfusion injury in the rat intestinal mesentery. Clin Hemorheol Microcirc 2000; 23: 2–4

67 Judzentiene A, Buzelje A. Chemical composition of essential oils of Artemisia vulgaris L. (mugwort) from North Lithuania. CHEMIEJA 2006; 17: 12–15

123 Goñalves JC, Oliveira Fde S, Benedito RB, de Sousa DP, de Almeida RN, de Araújo DA. Antiinuceptive activity of (-)-carveone: evidence of association with decreased peripheral nerve excitability. Biol Pharm Bull 2008; 31: 1017–1020

161 Samuelsien AB. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 2000; 71: 1–21

166 Yang YQ, Yao CS, Fang WS. A new triglucosylated naphthalene glycoside from Aloe vera L. Fitoterapia 2010; 81: 59–62

172 Samuelsien AB. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 2000; 71: 1–21

176 Samuelsien AB. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 2000; 71: 1–21

186 Guo QM. Yang XW. A new ellagic acid derivative from the fruits of Eucalyptus globulus Labill. Pharmazie 2005; 60: 708–710

187 Yang XW, Guo QM. Studies on chemical constituents in fruits of Eucalyptus globulus. Zhongguo Zhong Yao Za Zhi 2007; 32: 496–500

