Int J Sports Med 2011; 32(6): 446-450
DOI: 10.1055/s-0031-1271780
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

Changes of SM Muscles After STG Harvest

H. Fujiya1 , K. Goto2 , T. Kohno1 , H. Aoki3
  • 1Department of Sports Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
  • 2Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
  • 3St. Marianna University School of Medicine, FIFA Medical Centre of Excellence at Kawasaki, Japan
Further Information

Publication History

accepted after revision January 24, 2011

Publication Date:
12 May 2011 (online)

Abstract

Semimembranosus (SM) muscle as well as Semitendinosus-Gracilis (STG) tendon have the same role in knee flexion and tibial internal rotation. Because STG tendons are generally used for anterior cruciate ligament (ACL) reconstruction, some compensational changes in SM muscle might have been induced. The purpose of this study was to investigate the changes of SM muscle affected by harvesting STG tendons. 10 Wistar-strain male rats were divided into control (C) and STG-dissected (STG) groups. Left STG tendons including the distal half of muscle portions were dissected in group STG and only skin incision was performed in group C. 4 weeks after the treatments, fiber types classification and ultrastructural observations were performed. In group STG the decrease of type IIa (fast-twitch fiber with high oxidative capacity) was observed in deep layers of SM muscle (p<0.01). In ultrastructural observations, the increase in lipid droplets and mitochondria and the irregularity of Z disc were observed in deep layers. These morphological changes indicated that the mechanical loading might increase in SM muscle after harvesting of STG. Because of minor injuries in SM muscle, hamstring strength exercise at early stage of rehabilitation program should be carefully performed following ACL reconstruction using STG tendons in clinical practice.

References

  • 1 Anderson AF, Snyder RB, Lipscomb AB. Anterior cruciate ligament reconstruction. A prospective randomized study of three surgical methods.  Am J Sports Med. 2001;  29 272-279
  • 2 Armour T, Forwell L, Litchfield R, Kirkley A, Amendola N, Fowler PJ. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction.  Am J Sports Med. 2004;  32 1639-1643
  • 3 Armstrong RB, Phelps RO. Muscle fiber type composition of the rat hindlimb.  Am J Anat. 1984;  171 259-272
  • 4 Askew GN, Cox VN, Altringham JD, Goldspink DF. Mechanical properties of the latissimus dorsi muscle after cyclic training.  J Appl Physiol. 2002;  93 649-659
  • 5 Aune AK, Holm I, Risberg MA, Jensen HK, Steen H. Four-strand hamstring tendon autograft compared with patella tendon-bone autograft for anterior cruciate ligament reconstruction.  Am J Sports Med. 2001;  29 722-728
  • 6 Beynnon BD, Johnson RJ, Fleming BC, Stankewich CJ, Renström PA, Nichols CE. The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and closed kinetic chain exercise.  Am J Sports Med. 1997;  25 823-829
  • 7 Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renström P. Anterior cruciate ligament replacement: Comparison of bone-patellar tendon-born grafts with two-strand hamstring grafts. A prospective, randomized study.  J Bone Joint Surg Am. 2002;  84 1503-1513
  • 8 Biau DJ, Tournoux C, Katsahian S, Schranz P, Nizard R. ACL reconstruction: a meta-analysis of functional scores.  Clin Orthop Relat Res. 2007;  458 180-187
  • 9 Crane JD, Devries MC, Safdar A, Hamadeh MJ, Tarnopolsky MA. The effect of aging on human skeletal muscle mitochondrial and intracellular lipid ultrastructure.  J Gerontol A Biol Sci Med Sci. 2010;  65 119-128
  • 10 Dubé JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids amd insulin resistance: the athlete's paradox revisited.  Am J Physiol. 2008;  294 E882-E888
  • 11 Eisenberg BR. Quantitative ultrastructure of mammalian skeletal muscle. In: Perchey LD,Adrian RH, Geiger SR (eds). Handbook of Physiology: Skeletal Muscle. Baltimore: Waverly Press, Inc; 1983: 73-112
  • 12 Engel AG, Banker BQ. Lipid accumulation in muscle fibers; Ultrastructural changes in diseased muscle. In: Engel AG, Franzini-Armstrong C (eds). Myology Basic and Clinical. New York: McGraw-Hill, Inc; 1994: 975-976
  • 13 Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC. Reconstruction of anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft.  Arthroscopy. 2005;  21 791-803
  • 14 Goto K, Okuyama R, Honda M, Uchida H, Akema T, Ohira Y, Yoshioka T. Profiles of connectin (titin) in atrophied soleus muscle induced by unloading of rats.  J Appl Physiol. 2003;  94 897-902
  • 15 Guth L, Samaha FJ. Procedure for the histochemical demonstration of actomyosin ATPase.  Exp Neurol. 1970;  28 365-367
  • 16 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sports and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 17 Henning CE, Lynch MA, Glick KR. An in vivo strain gage study of elongation of the anterior cruciate ligament.  Am J Sports Med.. 1985;  13 22-26
  • 18 Herrington L, Wrapson C, Matthews M, Matthews H. Anterior cruciate ligament reconstruction, hamstring versus bone-patellar tendon-bone grafts: a systematic literature review of outcome from surgery.  Knee. 2005;  12 41-50
  • 19 Hughes JD, Johnson NA, Brown SJ, Sachinwalla T, Walton DW, Stannard SR. Effects of eccentric exercise-induced muscle damage on intramyocellular lipid concentraction and high energy phosphates.  Eur J Appl Physiol. 2010;  110 1135-1141
  • 20 Kapandji IA. The rotator muscles of the knee. In: Physiology of the Joints; Vol 2 Lower Limb. New York: Churchill Livingstone; 1987: 142-143
  • 21 Karlson JA, Steiner ME, Brown CH, Brown CH, Johnson J. Anterior cruciate ligament reconstruction using gracillis and semitendinosus tendons. Comparison through-the-condyle and over-the-top graft placements.  Am J Sports Med. 1994;  22 659-666
  • 22 Kartus J, Stener S, Lindahl S, Engström B, Eriksson BI, Karlsson J. Factors affecting donor-site morbidity after anterior cruciate ligament reconstruction using bone-patellar tendon-bone autografts.  Knee Surg Sports Traumatol Arthrosc. 1997;  5 222-228
  • 23 Landes S, Nyland J, Elmlinger B, Tillet E, Caborn D. Knee flexor strength after ACL reconstruction: comparison between hamstring autograft, tibial anterior allograft, and non-injured controls.  Knee Surg Sports Traumatol Arthrosc. 2010;  18 317-324
  • 24 Lieber RL, Woodburn TM, Fridén J. Muscle damage induced by eccentric contractions of 25% strain.  J Appl Physiol.. 1991;  70 2498-2507
  • 25 Lowe DA, Warren GL, Ingalls CP, Boorstein DB, Armstrong RB. Muscle function and protein metabolism after initiation of eccentric contraction-induced injury.  J Appl Physiol. 1995;  79 1260-1270
  • 26 Martin WD, Romond EH. Effects of chronic rotation and hypergravity on muscle fibers of soleus and plantaris muscles of the rat.  Exp Neurol. 1975;  49 758-771
  • 27 Mobley BA, Eisenberg BR. Sizes of components in frog skeletal muscle measured by methods of stereology.  J Gen Physiol. 1975;  66 31-45
  • 28 Nachlas MM, Tsou KC, Souza ED, Cheng CS, Seligman AM. Cytochemical demonstration of succinate dehydrogenase by use of a new p-nitrophenyl substitute diterazole.  J Histochem Cytochem. 1957;  5 420-436
  • 29 Patterson MF, Stephenson GM, Stephanson DG. Denervation produces different single fiber phenotypes in fast- and slow-twitch hindlimb muscles of the rat.  Am J Physiol. 2006;  291 C518-C528
  • 30 Sachs RA, Daniel DM, Stone ML, Garfein RF. Patellofemoral problems after anterior cruciate ligament reconstruction.  Am J Sports Med. 1989;  17 760-765
  • 31 Schrauwen-Hinderling VB, Schrauwen P, Hesselink MK, van Engelshoven JM, Nicolay K, Saris WH, Kessels AG, Kooi ME. The increase in intramyocellular lipid content is very early response to training.  J Clin Endocrinol Metab. 2003;  88 1610-1616
  • 32 Schrauwen-Hinderling VB, Hesselink MK, Schrauwen P, Kooi ME. Intramyocellular lipid content in human skeletal muscle.  Obesity. 2006;  14 357-367
  • 33 Segawa H, Omori G, Koga Y, Kameo T, Iida S, Tanaka M. Rotational muscle strength of the limb after anterior cruciate ligament reconstruction using semitendinosus and gracilis tendon.  Arthroscopy. 2002;  18 177-182
  • 34 Spindler KP, Kuhn JE, Freedman KB, Matthews CE, Dittus RS, Harrel FE. Anterior cruciate ligament reconstruction autograft choice: Bone-tendon-bone versus hamstring. Does it really matter? A systematic review.  Am J Sports Med. 2004;  32 1986-1995
  • 35 Suter E, Hoppeler H, Claassen H, Billeter R, Aebi U, Horber F, Jaeger P, Marti B. Ultrastructural modification of human skeletal muscle tissue with 6-month moderate-intensity exercise training.  Int J Sports Med. 1995;  16 160-166
  • 36 Suwa M, Nakano H, Higaki Y, Nakamura T, Katsuta S, Kumagai S. Increased wheel-running activity in the genetically skeletal fast-twitch fiber-dominant rats.  J Appl Physiol. 2003;  94 185-192
  • 37 Tagesson S, Oberg B, Kvist J. Tibial translation and muscle activation during rehabilitation exercises 5 weeks after anterior cruciate ligament reconstruction.  Scand J Med Sci Sports. 2010;  20 154-164
  • 38 Takekura H, Yoshioka T. Specific mitochondrial responses to running training are induced in each type of single muscle fibers of rats.  Jpn J Physiol. 1989;  39 497-509
  • 39 Torry MR, Decker MJ, Jockel JR, Viola R, Sterett WI, Steadman JR. Comparison of tibial rotation strength in patients’ status after anterior cruciate ligament reconstruction with hamstring versus patellar tendon autografts.  Clin J Sports Med. 2004;  14 325-331
  • 40 van Grinsven S, van Cingel RE, Holla CJ, van Loon CJ. Evidence-based rehabilitation following anterior cruciate ligament reconstruction.  Knee Surg Sports Traumatol Arthrosc. 2010;  18 1128-1144
  • 41 Viola RW, Sterett WI, Newfield D, Steadman JR, Torry MR. Internal and external tibial rotation strength after anterior cruciate ligament reconstruction using ipsilateral semitendinosus and gracilis tendon autografts.  Am J Sports Med. 2000;  28 552-555
  • 42 Weibel ER. Stereological techniques for electron microscopic morphometry. In: Hayat MA (ed). Principles and Techniques of Electron Microscopy. New York: Van Nostrand Reinhold Company; 1973. 3: 237
  • 43 Wrobleski R, Edström L. Changes in elemental composition of single muscle fibers following tenotomy of the rat soleus muscle.  Muscle Nerve. 1983;  6 490-496
  • 44 Yoshioka K, Takekura H, Yamashita K. Effects of endurance training on disuse muscle atrophy induced by body suspension in rats.  Med Sci Sports Exerc. 1992;  37 150-161
  • 45 Yoshioka T, Yamashita-Goto K, Tanaka O, Uchida H, Kimura M, Fujita K, Sekiguchi C, Nagaoka S. Effect of spaceflight on enzyme activities and ultrastructure of fast-type skeletal muscles of rats.  Jpn J Physiol. 1997;  47 471-476
  • 46 Zhang W, Miao J, Zhang G, Liu R, Zhang D, Wan Q, Yu Y, Zhao G, Li Z. Muscle carnitine deficiency: adult onset lipid storage myopathy with sensory neuropathy.  Neurol Sci. 2010;  31 61-64
  • 47 Zhong H, Roy RR, Siengthai B, Edgerton VR. Effects of inactivity on fiber size and myonuclear number in rat soleus muscle.  J Appl Physiol. 2005;  99 1494-1499

Correspondence

Dr. Hiroto FujiyaMD, PhD 

Department of Sports Medicine

St. Marianna University School

of Medicine

2-16-1 sugao miyamae

Kawasaki 216-8511

Japan

Phone: +81/44/977 8111

Fax: +81/44/977 9327

Email: fujiya-1487@marianna-u.ac.jp

    >